首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Using the climate feedback response analysis method to quantify climate feedbacks in the middle atmosphere
【24h】

Using the climate feedback response analysis method to quantify climate feedbacks in the middle atmosphere

机译:使用气候反馈响应分析方法量化中部大气中的气候反馈

获取原文
           

摘要

Over recent decades it has become clear that the middle atmosphere has a significant impact on surface and tropospheric climate. A better understanding of the middle atmosphere and how it reacts to the current increase in the concentration of carbon dioxide (CO2) is therefore necessary. In this study, we investigate the response of the middle atmosphere to a doubling of the CO2 concentration, and the associated changes in sea surface temperatures (SSTs), using the Whole Atmosphere Community Climate Model (WACCM). We use the climate feedback response analysis method (CFRAM) to calculate the partial temperature changes due to an external forcing and climate feedbacks in the atmosphere. As this method has the unique feature of additivity, these partial temperature changes are linearly addable. In this study, we discuss the direct forcing of CO2 and the effects of the ozone, water vapour, cloud, albedo and dynamical feedbacks. As expected, our results show that the direct forcing of CO2 cools the middle atmosphere. This cooling becomes stronger with increasing height; the cooling in the upper stratosphere is about three times as strong as the cooling in the lower stratosphere. The ozone feedback yields a radiative feedback that mitigates this cooling in most regions of the middle atmosphere. However, in the tropical lower stratosphere, and in some regions of the mesosphere, the ozone feedback has a cooling effect. The increase in the CO2 concentration causes the dynamics to change. The temperature response due to this dynamical feedback is small in terms of the global average, although there are large temperature changes due to this feedback locally. The temperature change in the lower stratosphere is influenced by the water vapour feedback and, to a lesser degree, by the cloud and albedo feedback. These feedbacks play no role in the upper stratosphere and the mesosphere. We find that the effects of the changed SSTs on the middle atmosphere are relatively small compared to the effects of changing the CO2. However, the changes in SSTs are responsible for dynamical feedbacks that cause large temperature changes. Moreover, the temperature response to the water vapour feedback in the lower stratosphere is almost solely due to changes in the SSTs. As CFRAM has not been applied to the middle atmosphere in this way before, this study also serves to investigate the applicability and the limitations of this method. This work shows that CFRAM is a very powerful tool for studying climate feedbacks in the middle atmosphere. However, it should be noted that there is a relatively large error term associated with the current method in the middle atmosphere, which can, to a large extent, be explained by the linearization in the method.
机译:最近几十年来,中型大气层对表面和对流层气候产生重大影响。因此,需要更好地理解中部大气层以及如何对二氧化碳浓度(CO2)的电流增加的反应。在这项研究中,我们研究了中间大气的响应与二氧化碳浓度的加倍,以及使用全部大气群落气候模型(WACCM)的海面温度(SSTS)的相关变化。我们使用气候反馈响应分析方法(CFRAM)来计算由于大气中的外部迫使和气候反馈而导致的部分温度变化。由于该方法具有添加性的独特特征,因此这些部分温度变化是可线性的可添加的。在这项研究中,我们讨论了二氧化碳的直接迫使臭氧,水蒸气,云,反玻璃和动态反馈的效果。正如预期的那样,我们的结果表明,二氧化碳的直接迫使冷却中部大气层。这种冷却随着高度的增加而变得更强;上层间的冷却大约是较低平流层的冷却的三倍。臭氧的反馈产生辐射反馈,其在中部大气的大多数区域中减轻这种冷却。然而,在热带较低的平流层中,并且在介质层的一些区域,臭氧的反馈具有冷却效果。 CO2浓度的增加导致动力学变化。由于这种动态反馈引起的温度响应在全球平均值方面较小,尽管由于本地反馈,具有大的温度变化。较低平流层的温度变化受水蒸气反馈的影响,并通过云和反馈的反馈来影响较小程度。这些反馈在上层层和介质层中没有作用。我们发现,与改变二氧化碳的影响相比,变化的SST对中间气氛的影响相对较小。但是,SST的变化负责导致大温变化的动态反馈。此外,对较低平流层中的水蒸气反馈的温度响应几乎是由于SST的变化。由于CFRAM以这种方式尚未应用于中型大气,这项研究还用于研究该方法的适用性和局限性。这项工作表明,CFRAM是一种非常强大的工具,用于研究中部大气中的气候反馈。然而,应该注意的是,在很大程度上可以通过方法中的线性化来解释与中间大气中的当前方法相关联的相对大的误差项。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号