首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Investigation of aerosol–cloud interactions under different absorptive aerosol regimes using Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) ground-based measurements
【24h】

Investigation of aerosol–cloud interactions under different absorptive aerosol regimes using Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) ground-based measurements

机译:使用大气辐射测量(ARM)南部大平原(SGP)地面测量不同吸收气溶胶制度下的气溶胶云相互作用

获取原文
           

摘要

The aerosol indirect effect on cloud microphysical and radiative properties is one of the largest uncertainties in climate simulations. In order to investigate the aerosol–cloud interactions, a total of 16 low-level stratus cloud cases under daytime coupled boundary-layer conditions are selected over the southern Great Plains (SGP) region of the United States. The physicochemical properties of aerosols and their impacts on cloud microphysical properties are examined using data collected from the Department of Energy Atmospheric Radiation Measurement (ARM) facility at the SGP site. The aerosol–cloud interaction index (ACIr) is used to quantify the aerosol impacts with respect to cloud-droplet effective radius. The mean value of ACIr calculated from all selected samples is 0.145±0.05 and ranges from 0.09 to 0.24 at a range of cloud liquid water paths (LWPs; LWP=20–300gm?2). The magnitude of ACIr decreases with an increasing LWP, which suggests a diminished cloud microphysical response to aerosol loading, presumably due to enhanced condensational growth processes and enlarged particle sizes. The impact of aerosols with different light-absorbing abilities on the sensitivity of cloud microphysical responses is also investigated. In the presence of weak light-absorbing aerosols, the low-level clouds feature a higher number concentration of cloud condensation nuclei (NCCN) and smaller effective radii (re), while the opposite is true for strong light-absorbing aerosols. Furthermore, the mean activation ratio of aerosols to CCN (NCCN∕Na) for weakly (strongly) absorbing aerosols is 0.54 (0.45), owing to the aerosol microphysical effects, particularly the different aerosol compositions inferred by their absorptive properties. In terms of the sensitivity of cloud-droplet number concentration (Nd) to NCCN, the fraction of CCN that converted to cloud droplets (Nd∕NCCN) for the weakly (strongly) absorptive regime is 0.69 (0.54). The measured ACIr values in the weakly absorptive regime are relatively higher, indicating that clouds have greater microphysical responses to aerosols, owing to the favorable thermodynamic condition. The reduced ACIr values in the strongly absorptive regime are due to the cloud-layer heating effect induced by strong light-absorbing aerosols. Consequently, we expect larger shortwave radiative cooling effects from clouds in the weakly absorptive regime than those in the strongly absorptive regime.
机译:气溶胶间接对云微动物和辐射特性的影响是气候模拟中最大的不确定性之一。为了研究气溶胶云相互作用,在白天耦合边界层条件下共有16个低级层云病例被选中在美国的南部大平原(SGP)区域。使用从SGP部位的能量大气辐射测量(ARM)设施系收集的数据来检查气溶胶的物理化学性质及其对云微神经性质的影响。气溶胶云相互作用指数(acir)用于量化相对于云液滴有效半径的气溶胶的影响。从所有选定样品计算的丙菌的平均值为0.145±0.05,范围为0.09至0.24,在一系列云液体水路径(LWPS; LWP = 20-300gm?2)。丙发幅度随着LWP的增加而降低,这表明对气溶胶载荷的云微动物响应减少,可能是由于增强的缩合生长过程和扩大的颗粒尺寸。还研究了对云微作物反应敏感性不同光吸收能力的气溶胶的影响。在弱光气溶胶的存在下,低级云具有较高数量的云凝结核(NCCN)和较小的有效半径(RE),而相反的是对于强光吸收气溶胶是正确的。此外,由于气溶胶微动物学作用,特别是气溶胶微作用,特别是通过吸收性推断的不同气溶胶组合物,弱(强烈)的气溶胶对CCN(NCCN / NA)的平均活化比为0.54(0.45)。就云液滴数浓度(ND)至NCCN的敏感性而言,转换为云液滴(ND / NCCN)的CCN的分数为弱(强烈)吸收制度为0.69(0.54)。弱吸收制度中的测量丙尔值相对较高,表明云对气溶胶具有更大的微妙反应,由于热力学条件有利。强吸收制度的减少的丙瓦值是由于强烈的光吸收气溶胶引起的云层加热效果。因此,我们预计云在弱吸收制度中的短波辐射冷却效果比强吸收制度的更大的短波辐射冷却效应。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号