首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Shortwave radiative impact of liquid–liquid phase separation in brown carbon aerosols
【24h】

Shortwave radiative impact of liquid–liquid phase separation in brown carbon aerosols

机译:液液相分离在棕色碳气溶胶中的短波辐射辐射影响

获取原文
           

摘要

Atmospheric aerosol particles may undergo liquid–liquid phase separation (LLPS) when exposed to varying relative humidity. In this study, we model how the change in morphology affects the shortwave radiative forcing, in particular for particles containing organic carbon as a molecular absorber, often termed “brown carbon” (BrC). Preferentially, such an absorber will redistribute to the organic phase after LLPS. We limited our investigation to particle diameters between 0.04 and 0.5μm, atmospherically relevant organic-to-inorganic mass ratios typical for aged aerosol (1:4OIR4:1) and absorptivities ranging from zero (purely scattering) to highly absorbing brown carbon. For atmospherically relevant O:C ratios, core-shell morphology is expected for phase-separated particles. We compute the scattering and absorption cross sections for realistic eccentric core-shell morphologies. For the size range of interest here, we show that assuming the core-shell morphology to be concentric is sufficiently accurate and numerically much more efficient than averaging over eccentric morphologies. In the UV region, where BrC absorbs strongest, phase-separated particles may exhibit a scattering cross section up to 50% larger than those of homogenously mixed particles, while their absorption cross section is up to 20% smaller. Integrating over the full solar spectrum, due to the strong wavelength dependence of BrC absorptivity, limits the shortwave radiative impact of LLPS in the thin aerosol layer approximation. For particles with very substantial BrC absorption there will be a radiative forcing enhancement of 4%–11.8% depending on the ?ngstr?m exponent (AAE) of BrC absorptivity for the case of small surface albedos and a decrease of up to 18% for surfaces with high reflectivity. However, for those of moderate absorptivity, LLPS will have no significant shortwave radiative impact.
机译:在暴露于不同的相对湿度时,大气气溶胶颗粒可能经历液 - 液相分离(LLP)。在这项研究中,我们模拟了形态的变化如何影响短波辐射强制,特别是对于含有有机碳作为分子吸收剂的颗粒,通常称为“棕色碳”(BRC)。优选地,这种吸收剂将在LLP后重新分配给有机相。我们将对0.04至0.5μm的粒径有限,典型的粒径为0.04和0.5μm,典型的气溶胶(1:4oIr4:1)和吸收活性,从零(纯散射)到高度吸收的棕色碳。对于大气相关的O:C比率,预期相位分离颗粒的核心壳形态。我们计算用于现实偏心核心壳形态的散射和吸收横截面。对于此处的尺寸范围,我们表明,假设核心壳形态是同心的,比偏心形态的平均值足够准确,数值更高。在UV区域中,其中BRC吸收最强,相分离的颗粒可以表现出高达50%的散射横截面,其大于均质混合颗粒的散射横截面,而其吸收横截面高达20%。由于BRC吸收率的强波长依赖性,整合到完全太阳频谱上,因此限制了LLP在薄的气溶胶层近似值中的短波辐射撞击。对于具有非常实质的BRC吸收的颗粒,辐射强制增强4%-11.8%,取决于BRC吸收率的αNGSTRαM指数(AAE)对于小的表面反玻璃的情况,减少高达18%曲面高反射率。然而,对于那些中度吸收率的那些,LLP将没有显着的短波辐射影响。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号