首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Future methane, hydroxyl, and their uncertainties: key climate and emission parameters for future predictions
【24h】

Future methane, hydroxyl, and their uncertainties: key climate and emission parameters for future predictions

机译:未来甲烷,羟基及其不确定性:未来预测的关键气候和排放参数

获取原文
           

摘要

Accurate prediction of future methane abundances following a climate scenario requires understanding the lifetime changes driven by anthropogenic emissions, meteorological factors, and chemistry-climate feedbacks. Uncertainty in any of these influences or the underlying processes implies uncertainty in future abundance and radiative forcing. We simulate methane lifetime in three chemical transport models (CTMs) – UCI CTM, GEOS-Chem, and Oslo CTM3 – over the period 1997–2009 and compare the models' year-to-year variability against constraints from global methyl chloroform observations. Using sensitivity tests, we find that temperature, water vapor, stratospheric ozone column, biomass burning and lightning NOx are the dominant sources of interannual changes in methane lifetime in all three models. We also evaluate each model's response to forcings that have impacts on decadal time scales, such as methane feedback, and anthropogenic emissions. In general, these different CTMs show similar sensitivities to the driving variables. We construct a parametric model that reproduces most of the interannual variability of each CTM and use it to predict methane lifetime from 1980 through 2100 following a specified emissions and climate scenario (RCP 8.5). The parametric model propagates uncertainties through all steps and provides a foundation for predicting methane abundances in any climate scenario. Our sensitivity tests also enable a new estimate of the methane global warming potential (GWP), accounting for stratospheric ozone effects, including those mediated by water vapor. We estimate the 100-yr GWP to be 32, which is 25% larger than past assessments.
机译:气候情景后未来甲烷丰富的准确预测需要了解受人类发射,气象因素和化学 - 气候反馈所驱动的寿命变化。任何这些影响或潜在流程中的任何不确定性都意味着未来丰富和辐射强制的不确定性。在1997 - 2009年期间,我们在三种化学传输模型(CTMS) - UCI CTM,Geos-Chem和Oslo CTM3中模拟了甲烷寿命,并比较了全球甲基氯仿观察的制约因素的模型逐年变异性。使用灵敏度测试,我们发现温度,水蒸气,平流层臭氧柱,生物质燃烧和闪电NOx是所有三种模型中甲烷寿命的统治变化的主要源。我们还评估每个模型对强制性的反应,这些强制对甲烷反馈等甲烷反馈和人为排放产生影响。通常,这些不同的CTMS对驱动变量显示出类似的敏感性。我们构建一个参数模型,可以再现每个CTM的大多数续变性,并使用它在指定的排放和气候情景(RCP 8.5)之后从1980到2100预测甲烷寿命。参数模型通过所有步骤传播不确定性,并为任何气候情景中预测甲烷丰度提供基础。我们的敏感性测试还使甲烷全球变暖潜力(GWP)的新估计,占平衡层臭氧效应,包括由水蒸气介导的那些。我们估计100年的GWP为32,比过去评估大25%。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号