首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >The impact of temperature vertical structure on trajectory modeling of stratospheric water vapor
【24h】

The impact of temperature vertical structure on trajectory modeling of stratospheric water vapor

机译:温度垂直结构对平流层水蒸气轨迹建模的影响

获取原文
           

摘要

Lagrangian trajectories driven by reanalysis meteorological fields are frequently used to study water vapor (H2O) in the stratosphere, in which the tropical cold-point temperatures regulate the amount of H2O entering the stratosphere. Therefore, the accuracy of temperatures in the tropical tropopause layer (TTL) is of great importance for understanding stratospheric H2O abundances. Currently, most reanalyses, such as the NASA MERRA (Modern Era Retrospective – analysis for Research and Applications), only provide temperatures with ~ 1.2 km vertical resolution in the TTL, which has been argued to miss finer vertical structure in the tropopause and therefore introduce uncertainties in our understanding of stratospheric H2O. In this paper, we quantify this uncertainty by comparing the Lagrangian trajectory prediction of H2O using MERRA temperatures on standard model levels (traj.MER-T) to those using GPS temperatures at finer vertical resolution (traj.GPS-T), and those using adjusted MERRA temperatures with finer vertical structures induced by waves (traj.MER-Twave). It turns out that by using temperatures with finer vertical structure in the tropopause, the trajectory model more realistically simulates the dehydration of air entering the stratosphere. But the effect on H2O abundances is relatively minor: compared with traj.MER-T, traj.GPS-T tends to dry air by ~ 0.1 ppmv, while traj.MER-Twave tends to dry air by 0.2–0.3 ppmv. Despite these differences in absolute values of predicted H2O and vertical dehydration patterns, there is virtually no difference in the interannual variability in different runs. Overall, we find that a tropopause temperature with finer vertical structure has limited impact on predicted stratospheric H2O.
机译:由Reanalysis气象场驱动的拉格朗日轨迹经常用于研究平流层中的水蒸气(H2O),其中热带冷点温度调节进入平流层的H2O的量。因此,热带对流层层(TTL)中温度的准确性非常重要,对理解平流层H2O丰度。目前,大多数Reanalyses(如NASA Merra)(现代时代回顾 - 研究和应用分析),在TTL中只提供了〜1.2公里的垂直分辨率,这已经争辩说是在对流层中错过更精细的垂直结构,因此介绍我们对划分的H2O理解的不确定性。在本文中,我们通过使用Merra温度在标准模型水平(Traj.mer-T)上使用Merra温度以更精细的垂直分辨率(Traj.GPS-T)的那些,通过Merra温度对H2O的拉格朗日轨迹预测来量化这种不确定性。使用GPS温度调整Merra温度与波浪(Traj.mer-Twave)引起的更精细的垂直结构。事实证明,通过使用对流层中更精细的垂直结构的温度,轨迹模型更现实地模拟进入平流层的空气的脱水。但对H2O丰度的影响相对较小:与Traj.mer-T相比,Traj.gps-T趋于干燥空气〜0.1ppmv,而Traj.mer-Twave趋于0.2-0.3ppmv趋于干燥空气。尽管预测的H2O和垂直脱水模式的绝对值存在这些差异,但不同运行的际变度几乎没有差异。总体而言,我们发现具有更精细的垂直结构的对流度温度对预测的划分性H2O产生有限。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号