...
首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Climate versus emission drivers of methane lifetime against loss by tropospheric OH from 1860–2100
【24h】

Climate versus emission drivers of methane lifetime against loss by tropospheric OH from 1860–2100

机译:从1860 - 2100起,甲烷寿命的气候与甲烷寿命的排放驱动因素

获取原文
   

获取外文期刊封面封底 >>

       

摘要

With a more-than-doubling in the atmospheric abundance of the potent greenhouse gas methane (CH4) since preindustrial times, and indications of renewed growth following a leveling off in recent years, questions arise as to future trends and resulting climate and public health impacts from continued growth without mitigation. Changes in atmospheric methane lifetime are determined by factors which regulate the abundance of OH, the primary methane removal mechanism, including changes in CH4 itself. We investigate the role of emissions of short-lived species and climate in determining the evolution of methane lifetime against loss by tropospheric OH, (CH4_OH), in a suite of historical (1860–2005) and future Representative Concentration Pathway (RCP) simulations (2006–2100), conducted with the Geophysical Fluid Dynamics Laboratory (GFDL) fully coupled chemistry-climate model (CM3). From preindustrial to present, CM3 simulates an overall 5% increase in CH4_OH due to a doubling of the methane burden which offsets coincident increases in nitrogen oxide (NOx emissions. Over the last two decades, however, the CH4_OH declines steadily, coinciding with the most rapid climate warming and observed slow-down in CH4 growth rates, reflecting a possible negative feedback through the CH4 sink. Sensitivity simulations with CM3 suggest that the aerosol indirect effect (aerosol-cloud interactions) plays a significant role in cooling the CM3 climate. The projected decline in aerosols under all RCPs contributes to climate warming over the 21st century, which influences the future evolution of OH concentration and CH4_OH. Projected changes in CH4_OH from 2006 to 2100 range from 13% to 4%. The only projected increase occurs in the most extreme warming case (RCP8.5) due to the near-doubling of the CH4 abundance, reflecting a positive feedback on the climate system. The largest decrease occurs in the RCP4.5 scenario due to changes in short-lived climate forcing agents which reinforce climate warming and enhance OH. This decrease is more-than-halved in a sensitivity simulation in which only well-mixed greenhouse gas radiative forcing changes along the RCP4.5 scenario (5% vs. 13%).
机译:由于在近年来的预工业时代(CH4)的高效温室气体甲烷(CH4)中的大气丰富的大气丰富,以及近年来水平趋势的迹象,出现了未来的趋势和导致气候和公共卫生影响的问题从不缓解的持续增长。大气甲烷寿命的变化由调节oh,初级甲烷去除机制的丰度的因素决定,包括CH 4本身的变化。我们调查短期物种和气候排放在确定甲烷寿命的演变,以历史(1860-2005)和未来代表浓度途径(RCP)模拟的套件(CH4_OH)对甲烷寿命的演变。 2006-2100),用地球物理流体动力学实验室(GFDL)完全耦合化学 - 气候模型(CM3)进行。从Prepingustial到呈现,CM3由于甲烷负担的加倍模拟CH4_OH的总体5%,其偏移氮氧化物中的重合增加(NOx排放量。然而,CH4_OH在最稳定地下降,最恰当地下降快速的气候变暖,观察到CH4的生长速率缓慢,反映了通过CH4水槽的可能的负反馈。具有CM3的灵敏度模拟表明气溶胶间接效应(气溶胶云相互作用)在冷却CM3气候中起着重要作用。该所有RCP下的气溶胶中的预计下降有助于在21世纪的气候变暖,这影响了OH集中和CH4_OH的未来演变。从2006年的CH4_OH预计变化到2100个范围从13%到4%。唯一的预计增加会发生最极端的变暖案例(RCP8.5)由于CH4丰富的近倍,反映了对气候系统的正反馈。最大的减少E由于短期气候迫使代理的变化而发生的RCP4.5场景发生,这加强了气候变暖和增强哦。这种降低在灵敏度模拟中大于减半,其中仅在沿RCP4.5场景(5%对13%)的良好混合的温室气体辐射强制变化。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号