...
首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >A new mechanism for atmospheric mercury redox chemistry: implications for the global mercury budget
【24h】

A new mechanism for atmospheric mercury redox chemistry: implications for the global mercury budget

机译:大气汞氧化还原化学的一种新机制:对全球汞预算的影响

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Mercury (Hg) is emitted to the atmosphere mainly as volatile elemental Hg0. Oxidation to water-soluble HgII plays a major role in Hg deposition to ecosystems. Here, we implement a new mechanism for atmospheric Hg0?∕?HgII redox chemistry in the GEOS-Chem global model and examine the implications for the global atmospheric Hg budget and deposition patterns. Our simulation includes a new coupling of GEOS-Chem to an ocean general circulation model (MITgcm), enabling a global 3-D representation of atmosphere–ocean Hg0?∕?HgII cycling. We find that atomic bromine (Br) of marine organobromine origin is the main atmospheric Hg0 oxidant and that second-stage HgBr oxidation is mainly by the NO2 and HO2 radicals. The resulting chemical lifetime of tropospheric Hg0 against oxidation is 2.7?months, shorter than in previous models. Fast HgII atmospheric reduction must occur in order to match the ?~??6-month lifetime of Hg against deposition implied by the observed atmospheric variability of total gaseous mercury (TGM??≡??Hg0?+?HgII(g)). We implement this reduction in GEOS-Chem as photolysis of aqueous-phase HgII–organic complexes in aerosols and clouds, resulting in a TGM lifetime of 5.2?months against deposition and matching both mean observed TGM and its variability. Model sensitivity analysis shows that the interhemispheric gradient of TGM, previously used to infer a longer Hg lifetime against deposition, is misleading because Southern Hemisphere Hg mainly originates from oceanic emissions rather than transport from the Northern Hemisphere. The model reproduces the observed seasonal TGM variation at northern midlatitudes (maximum in February, minimum in September) driven by chemistry and oceanic evasion, but it does not reproduce the lack of seasonality observed at southern hemispheric marine sites. Aircraft observations in the lowermost stratosphere show a strong TGM–ozone relationship indicative of fast Hg0 oxidation, but we show that this relationship provides only a weak test of Hg chemistry because it is also influenced by mixing. The model reproduces observed Hg wet deposition fluxes over North America, Europe, and China with little bias (0–30?%). It reproduces qualitatively the observed maximum in US deposition around the Gulf of Mexico, reflecting a combination of deep convection and availability of NO2 and HO2 radicals for second-stage HgBr oxidation. However, the magnitude of this maximum is underestimated. The relatively low observed Hg wet deposition over rural China is attributed to fast HgII reduction in the presence of high organic aerosol concentrations. We find that 80?% of HgII deposition is to the global oceans, reflecting the marine origin of Br and low concentrations of organic aerosols for HgII reduction. Most of that deposition takes place to the tropical oceans due to the availability of HO2 and NO2 for second-stage HgBr oxidation.
机译:汞(HG)主要作为挥发性元素HG0发射到大气中。对水溶性HGII的氧化在HG沉积到生态系统中起主要作用。在这里,我们为大气HG0实施了新机制?/?HGII氧化还原化学在Geos-Chem全球模型中,并研究了全球大气HG预算和沉积模式的影响。我们的模拟包括Geos-Chem到海洋一般循环模型(MitGCM)的新耦合,实现了大气海洋HG0的全局3-D表示?/?HGII循环。我们发现海洋时源的原子溴(BR)是主要的大气HG0氧化剂,第二阶段HgBr氧化主要由NO2和HO2基团。由此产生的对流层HG0氧化的化学寿命为2.7?几个月,比以前的模型短。必须发生快速的HGII大气减少,以便与观察到的大气汞的大气变异性(TGM ?? HG0?HGII(G)暗示的沉积暗示的HG暗示的沉积〜6个月的终身。我们在气溶胶和云中将Geos-Chem的光解实施成为水溶液和云中的水相HgII-有机络合物,导致TGM寿命为5.2Ω·数矩,反对沉积和匹配的平均观察到的TGM及其可变性。模型敏感性分析表明,以前用于推断较长的HG寿命的TGM的卵闭梯度是误导性的,因为南半球HG主要来自海洋排放而不是从北半球的运输。该模型在化学和海洋逃避中,北中位于北部中位数(2月最高,最低)的观察到的季节性TGM变异(最大值,最低),但它不会在南半球海洋网站上繁殖缺乏季节性。最下划线的飞机观察显示出强烈的TGM臭氧关系,表明快速HG0氧化,但我们表明这种关系仅提供了HG化学的弱试验,因为它也受混合的影响。该模型可再现北美,欧洲和中国的观察到的HG湿沉积势倍(0-30?%)。它在墨西哥湾周围的美国沉积中观察到的最大值,反映了NO2和HO2基团的结合,用于第二阶段HGBR氧化。但是,最大值的大小被低估了。在中国农村的观察到HG湿沉积相对较低,归因于高有机气溶胶浓度存在的快速HGII。我们发现80%的HGII沉积是全球海洋,反映了BR和低浓度的HGII有机气溶胶的海洋起源。由于HO2和NO2用于第二阶段HGBR氧化,大部分沉积发生在热带海洋上。
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号