首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >DO3SE modelling of soil moisture to determine ozone flux to forest trees
【24h】

DO3SE modelling of soil moisture to determine ozone flux to forest trees

机译:DO3SE土壤水分建模,以确定林树木臭氧通量

获取原文
           

摘要

The DO3SE (Deposition of O3 for Stomatal Exchange) model is an established tool for estimating ozone (O3) deposition, stomatal flux and impacts to a variety of vegetation types across Europe. It has been embedded within the EMEP (European Monitoring and Evaluation Programme) photochemical model to provide a policy tool capable of relating the flux-based risk of vegetation damage to O3 precursor emission scenarios for use in policy formulation. A key limitation of regional flux-based risk assessments has been the assumption that soil water deficits are not limiting O3 flux due to the unavailability of evaluated methods for modelling soil water deficits and their influence on stomatal conductance (gsto), and subsequent O3 flux. This paper describes the development and evaluation of a method to estimate soil moisture status and its influence on gsto for a variety of forest tree species. This DO3SE soil moisture module uses the Penman-Monteith energy balance method to drive water cycling through the soil-plant-atmosphere system and empirical data describing gsto relationships with pre-dawn leaf water status to estimate the biological control of transpiration. We trial four different methods to estimate this biological control of the transpiration stream, which vary from simple methods that relate soil water content or potential directly to gsto, to more complex methods that incorporate hydraulic resistance and plant capacitance that control water flow through the plant system. These methods are evaluated against field data describing a variety of soil water variables, gsto and transpiration data for Norway spruce (Picea abies), Scots pine (Pinus sylvestris), birch (Betula pendula), aspen (Populus tremuloides), beech (Fagus sylvatica) and holm oak (Quercus ilex) collected from ten sites across Europe and North America. Modelled estimates of these variables show consistency with observed data when applying the simple empirical methods, with the timing and magnitude of soil drying events being captured well across all sites and reductions in transpiration with the onset of drought being predicted with reasonable accuracy. The more complex methods, which incorporate hydraulic resistance and plant capacitance, perform less well, with predicted drying cycles consistently underestimating the rate and magnitude of water loss from the soil. A sensitivity analysis showed that model performance was strongly dependent upon the local parameterisation of key model drivers such as the maximum gsto, soil texture, root depth and leaf area index. The results suggest that the simple modelling methods that relate gsto directly to soil water content and potential provide adequate estimates of soil moisture and influence on gsto such that they are suitable to be used to assess the potential risk posed by O3 to forest trees across Europe.
机译:DO3SE(o3沉积气孔交换)模型是估算臭氧(O3)沉积,气孔通量和影响到欧洲各种植被类型的建立工具。它嵌入了EMEP(欧洲监测和评估计划)的光化学模型,提供了一种能够将基于植物损伤的植被损坏风险与o3前体发射方案相关的政策工具,以便在政策制定中使用。区域助推器风险评估的关键限制一直是假设土壤水缺陷由于用于对土壤水缺陷的评估方法及其对气孔导度(GSTO)的影响以及随后的O3通量的影响而导致的土壤水缺陷导致的O3助焊剂。本文介绍了一种估计土壤水分状况的方法及其对各种林木树种的影响的开发和评价及其对GSTO的影响。这款DO3SE土壤水分模块采用Penman-Monteith能量平衡方法来驱动水循环通过土壤 - 植物 - 大气系统和描述GSTO关系与预曙光叶水状态的经验数据来估算蒸腾的生物控制。我们试验四种不同的方法来估计该蒸腾流的这种生物控制,其从将土壤水含量或直接潜力联系到GSTO的简单方法,以更复杂的方法,该方法包括控制水流通过植物系统的水流和植物电容。这些方法是针对描述各种土壤水分变量,GSTO和挪威云杉(Picea Andea),苏格兰松树(Pinus Sylvestris),桦树(Betula Pendula),白杨树(Populus Temuloides),山毛榉(FAGUS Sylvatica) )来自欧洲和北美的十个地点收集的Holm Oak(Quercus Ilex)。这些变量的建模估计显示了在应用简单的经验方法时与观察到的数据的一致性显示,土壤干燥事件的时序和大小在所有地点捕获,并通过合理准确地预测干旱的发作进行蒸腾。更复杂的方法包括液压阻力和植物电容,表现较少,具有预测的干燥循环,始终如一地低估了土壤的水损失的速度和大小。敏感性分析表明,模型性能强烈依赖于关键模型驱动因素的局部参数,如最大GSTO,土壤纹理,根深和叶面指数。结果表明,将GSTO直接与土壤含水量和潜力相关的简单建模方法为土壤湿度的充分估计提供了对GSTO的影响,使得它们适用于评估O3对欧洲林树造成的潜在风险。
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号