首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Separating the role of direct radiative heating and photolysis in modulating the atmospheric response to the amplitude of the 11-year solar cycle forcing
【24h】

Separating the role of direct radiative heating and photolysis in modulating the atmospheric response to the amplitude of the 11-year solar cycle forcing

机译:将直接辐射加热和光解的作用分开调节11年太阳循环强制幅度的大气反应

获取原文
           

摘要

The atmospheric response to the 11-year solar cycle is separated into the contributions from changes in direct radiative heating and photolysis rates using specially designed sensitivity simulations with the UM-UKCA (Unified Model coupled to the United Kingdom Chemistry and Aerosol model) chemistry–climate model. We perform a number of idealised time-slice experiments under perpetual solar maximum (SMAX) and minimum conditions (SMIN), and we find that contributions from changes in direct heating and photolysis rates are both important for determining the stratospheric shortwave heating, temperature and ozone responses to the amplitude of the 11-year solar cycle. The combined effects of the processes are found to be largely additive in the tropics but nonadditive in the Southern Hemisphere (SH) high latitudes during the dynamically active season. Our results indicate that, in contrast to the original mechanism proposed in the literature, the solar-induced changes in the horizontal shortwave heating rate gradients not only in autumn/early winter but throughout the dynamically active season are important for modulating the dynamical response to changes in solar forcing. In spring, these gradients are strongly influenced by the shortwave heating anomalies at higher southern latitudes, which are closely linked to the concurrent changes in ozone. In addition, our simulations indicate differences in the winter SH dynamical responses between the experiments. We suggest a couple of potential drivers of the simulated differences, i.e.?the role of enhanced zonally asymmetric ozone heating brought about by the increased solar-induced ozone levels under SMAX and/or sensitivity of the polar dynamical response to the altitude of the anomalous radiative tendencies. All in all, our results suggest that solar-induced changes in ozone, both in the tropics/mid-latitudes and the polar regions, are important for modulating the SH dynamical response to the 11-year solar cycle. In addition, the markedly nonadditive character of the SH polar vortex response simulated in austral spring highlights the need for consistent model implementation of the solar cycle forcing in both the radiative heating and photolysis schemes.
机译:对11年的太阳循环的大气反应分离为使用特殊设计的敏感性模拟与UM-UKCA(统一模型加上英国化学和气溶胶模型)化学 - 气候的直接辐射加热和光解率的贡献中的贡献模型。我们在永久的太阳能最大值(SMAX)和最小条件下(SMIN)执行许多理想化的时间切片实验,并且我们发现从直接加热和光解率的变化的贡献对于确定划分的分流器短波加热,温度和臭氧都很重要。对11年太阳循环的幅度的回应。在热带地区发现该方法的组合效果在热带地区在热带地区是在动态活跃的季节期间的南半球(SH)高纬度的非增长。我们的结果表明,与文献中提出的原始机制相比,太阳能诱导的水平短波加热速率梯度的变化不仅在秋季/初期,而且在整个动态活跃的季节对于调制变化的动态响应是重要的在太阳能迫使。在春天,这些梯度受到较高南部纬度的短波加热异常的强烈影响,这与臭氧的并发变化密切相关。此外,我们的模拟表明实验之间的冬季SH动态反应的差异。我们建议了一些模拟差异的潜在驱动因素,即增强的Zonaly非对称臭氧加热的作用通过增加的太阳能诱导的臭氧水平的Smax和/或极性动力学响应的敏感性对异常辐射的高度的敏感性倾向。总而言之,我们的结果表明,热带/中纬度和极地地区的太阳能引起的臭氧变化,都对于调制SH动态响应对11年的太阳循环来说很重要。此外,南部春季模拟的SH极地涡响应的显着非过型特征突出了在辐射加热和光解方框中强迫太阳循环的一致模型实现的需求。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号