首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Review and parameterisation of bi-directional ammonia exchange between vegetation and the atmosphere
【24h】

Review and parameterisation of bi-directional ammonia exchange between vegetation and the atmosphere

机译:植被与大气之间双向氨交换的回顾与参数

获取原文
           

摘要

Current deposition schemes used in atmospheric chemical transport models do not generally account for bi-directional exchange of ammonia (NH3). Bi-directional exchange schemes, which have so far been applied at the plot scale, can be included in transport models, but need to be parameterised with appropriate values of the ground layer compensation point (g), stomatal compensation point (s) and cuticular resistance (Rw). We review existing measurements of g, s as well as Rw and compile a comprehensive dataset from which we then propose generalised parameterisations. s is related to s, the non-dimensional ratio of [NH4+]apo and [H+]apo in the apoplast, through the temperature dependence of the combined Henry and dissociation equilibrium. The meta-analysis suggests that the nitrogen (N) input is the main driver of the apoplastic and bulk leaf concentrations of ammonium (NH4 apo, NH4 bulk). For managed ecosystems, the main source of N is fertilisation which is reflected in a peak value of s a few days following application, but also alters seasonal values of NH4 apo and NH4 bulk. We propose a parameterisation for s which includes peak values as a function of amount and type of fertiliser application which gradually decreases to a background value. The background s is based on total N input to the ecosystem as a yearly fertiliser application and N deposition (Ndep). For non-managed ecosystems, s is parameterised based solely on the link with Ndep. For Rw we propose a general parameterisation as a function of atmospheric relative humidity (RH), incorporating a minimum value (Rw(min)), which depends on the ratio of atmospheric acid concentrations (SO2, HNO3 and HCl) to NH3 concentrations. The parameterisations are based mainly on datasets from temperate locations in northern Europe making them most suitable for up-scaling in these regions (EMEP model for example). In principle, the parameterisations should be applicable to other climates, though there is a need for more underpinning data, with the uncertainties being especially large for tropical and subtropical conditions.
机译:大气化学传输模型中使用的电流沉积方案通常不考虑氨(NH3)的双向交换。到目前为止已经应用于绘图规模的双向交换方案,可以包括在运输模型中,但需要以适当的地层补偿点(g),气孔补偿点和粘膜进行参数。阻力(RW)。我们查看G,S以及RW的现有测量并编译一个全面的数据集,我们从中提出了广义的参数化。 S通过组合亨利和解离平衡的温度依赖性与术语有关的S,[NH 4 +] apo和[H +] Apo和[H +] Apo的非尺寸比。荟萃分析表明氮气(n)输入是铵(NH4 APO,NH4批量)的妊娠和散装浓度的主要驱动器。对于托管生态系统,N的主要来源是施肥的施肥,其在申请后几天的峰值中反映,也改变了NH4 APO和NH4散装的季节性值。我们提出了S的参数化,其包括峰值作为肥胖应用的量和类型的函数,其逐渐减少到背景值。背景S基于生态系统的总N输入作为年肥料应用和N沉积(NDEP)。对于非托管生态系统,S仅基于与NDEP的链接进行参数化。对于RW,我们提出了一种作为大气相对湿度(RH)的函数的一般参数化,其包含最小值(RW(MIN)),这取决于大气酸浓度(SO2,HNO 3和HCl)与NH 3浓度的比率。参数化主要基于来自北欧的温带位置的数据集,使得它们最适合在这些区域中的上缩放(例如EMEP型号)。原则上,参数化应适用于其他气候,尽管需要更多的内宁数据,但热情和亚热带条件的不确定性特别大。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号