首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Steps towards a mechanistic model of global soil nitric oxide emissions: implementation and space based-constraints
【24h】

Steps towards a mechanistic model of global soil nitric oxide emissions: implementation and space based-constraints

机译:迈出全球土壤一氧化氮排放机械模型的步骤:基于实施和空间限制

获取原文
           

摘要

Soils have been identified as a major source (~15%) of global nitrogen oxide (NOx) emissions. Parameterizations of soil NOx emissions (SNOx) commonly used in the current generation of chemical transport models were designed to capture mean seasonal behaviour. These parameterizations do not, however, respond quantitatively to the meteorological triggers that are observed to result in pulsed SNOx. Here we present a new parameterization of SNOx implemented within a global chemical transport model (GEOS-Chem). The parameterization represents available nitrogen (N) in soils using biome specific emission factors, online wet- and dry-deposition of N, and fertilizer and manure N derived from a spatially explicit dataset, distributed using seasonality derived from data obtained by the Moderate Resolution Imaging Spectrometer. Moreover, it represents the functional form of emissions derived from point measurements and ecosystem scale experiments including pulsing following soil wetting by rain or irrigation, and emissions that are a smooth function of soil moisture as well as temperature between 0 and 30 °C. This parameterization yields global above-soil SNOx of 10.7 Tg N yr?1, including 1.8 Tg N yr?1 from fertilizer N input (1.5% of applied N) and 0.5 Tg N yr?1 from atmospheric N deposition. Over the United States (US) Great Plains region, SNOx are predicted to comprise 15–40% of the tropospheric NO2 column and increase column variability by a factor of 2–4 during the summer months due to chemical fertilizer application and warm temperatures. SNOx enhancements of 50–80% of the simulated NO2 column are predicted over the African Sahel during the monsoon onset (April–June). In this region the day-to-day variability of column NO2 is increased by a factor of 5 due to pulsed-N emissions. We evaluate the model by comparison with observations of NO2 column density from the Ozone Monitoring Instrument (OMI). We find that the model is able to reproduce the observed interannual variability of NO2 (induced by pulsed-N emissions) over the US Great Plains. We also show that the OMI mean (median) NO2 observed during the overpass following first rainfall over the Sahel is 49% (23%) higher than in the five days preceding. The measured NO2 on the day after rainfall is still 23% (5%) higher, providing a direct measure of the pulse's decay time of 1–2 days. This is consistent with the pulsing representation used in our parameterization and much shorter than 5–14 day pulse decay length used in current models.
机译:已经鉴定为全球氮氧化物(NOx)排放的主要来源(〜15%)。常用于化学传输模型中常用的土壤NOx排放(SNOX)的参数化旨在捕获均值的季节性行为。然而,这些参数化不定量地响应观察到导致脉冲SNOX的气象触发器。在这里,我们在全球化学传输模型(Geos-Chem)内实现了新的SNOX参数化。参数化代表使用生物群体特定排放因子的土壤中的可用氮(n),在线湿法和粪便和肥料N衍生自用于空间显式数据集的肥料和粪便N,使用来自中等分辨率成像获得的数据的季节性分布光谱仪。此外,它代表了从点测量和生态系统尺度实验中衍生的排放的功能形式,包括雨水或灌溉后土壤润湿后的脉冲,以及土壤水分的平稳功能以及0至30℃的温度。该参数化产生10.7 Tg N YRα1的全球体上的斯内非,包括来自肥料N的1.8 Tg N YRα1输入(1.5%施用的N)和0.5 Tg N YRα1,来自大气N沉积。在美国(美国)大平原区,斯托克斯预计将包括15-40%的对流层No2柱,并在夏季增加柱变异,由于化学肥料应用和温暖的温度,夏季。在季风发作期间(4月至6月)期间,在非洲萨赫尔预测了50-80%的模拟No2柱的SNOX增强。在该区域中,由于脉冲-N排放,柱NO2的日常变异性增加了5倍。我们通过与臭氧监测仪(OMI)的NO2柱密度的观察进行比较来评估模型。我们发现该模型能够在美国大平原上再现观察到NO2的续际变化(由脉冲-N排放)。我们还表明,在萨赫尔的第一次降雨之后,在立交桥期间观察到的OMI平均值(中位数)NO2比前一天的五天高出49%(23%)。降雨后一天的测量No2仍然高出23%(5%),提供脉冲衰减时间为1-2天的直接测量。这与我们的参数化中使用的脉冲表示以及在当前模型中使用的短5-14天脉冲衰减长度的脉冲表示一致。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号