首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Formation of secondary aerosols over Europe: comparison of two gas-phase chemical mechanisms
【24h】

Formation of secondary aerosols over Europe: comparison of two gas-phase chemical mechanisms

机译:在欧洲形成二次气溶胶:两个气相化学机制的比较

获取原文
           

摘要

The impact of two recent gas-phase chemical kinetic mechanisms (CB05 and RACM2) on the formation of secondary inorganic and organic aerosols is compared for simulations of PM2.5 over Europe between 15 July and 15 August 2001. The host chemistry transport model is Polair3D of the Polyphemus air-quality platform. Particulate matter is modeled with a sectional aerosol model (SIREAM), which is coupled to the thermodynamic model ISORROPIA for inorganic species and to a module (MAEC) that treats both hydrophobic and hydrophilic species for secondary organic aerosol (SOA). Modifications are made to the gas-phase chemical mechanisms to handle the formation of SOA. In order to isolate the effect of the original chemical mechanisms on PM formation, the addition of reactions and chemical species needed for SOA formation was harmonized to the extent possible between the two gas-phase chemical mechanisms. Model performance is satisfactory with both mechanisms for speciated PM2.5. The monthly-mean difference of the concentration of PM2.5 is less than 1 μg m?3 (6%) over the entire domain. Secondary chemical components of PM2.5 include sulfate, nitrate, ammonium and organic aerosols, and the chemical composition of PM2.5 is not significantly different between the two mechanisms. Monthly-mean concentrations of inorganic aerosol are higher with RACM2 than with CB05 (+16% for sulfate, +11% for nitrate, and +10% for ammonium), whereas the concentrations of organic aerosols are slightly higher with CB05 than with RACM2 (+22% for anthropogenic SOA and +1% for biogenic SOA). Differences in the inorganic and organic aerosols result primarily from differences in oxidant concentrations (OH, O3 and NO3). Nitrate formation tends to be HNO3-limited over land and differences in the concentrations of nitrate are due to differences in concentration of HNO3. Differences in aerosols formed from aromatic SVOC are due to different aromatic oxidation between CB05 and RACM2. The aromatic oxidation in CB05 leads to more cresol formation, which then leads to more SOA. Differences in the aromatic aerosols would be significantly reduced with the recent CB05-TU mechanism for toluene oxidation. Differences in the biogenic aerosols are due to different oxidant concentrations (monoterpenes) and different particulate organic mass concentrations affecting the gas-particle partitioning of SOA (isoprene). These results show that the formulation of a gas-phase chemical kinetic mechanism for ozone can have significant direct (e.g., cresol formation) and indirect (e.g., oxidant levels) effects on PM formation. Furthermore, the incorporation of SOA into an existing gas-phase chemical kinetic mechanism requires the addition of reactions and product species, which should be conducted carefully to preserve the original mechanism design and reflect current knowledge of SOA formation processes (e.g., NOx dependence of some SOA yields). The development of chemical kinetic mechanisms, which offer sufficient detail for both oxidant and SOA formation is recommended.
机译:最近的两个气相化学动力学机制(CB05和RACM2)对欧洲2001年8月15日至8月15日之间的PM2.5模拟进行了两次气相化学动力学机制(CB05和RACM2)的影响。主持人化学运输模式是Polair3D聚合物空气质量平台。颗粒物质用截面气溶胶模型(SiReam)进行建模,其与用于无机物种的热力学模型同源偶尔偶联,并且对次级有机气溶胶(SOA)处理疏水性和亲水物种的模块(MAEC)。对气相化学机制进行修改以处理SOA的形成。为了分离原始化学机制对PM形成的影响,在两种气相化学机制之间可以在可能的程度之间进行协调的反应和化学物质。模型性能与推出PM2.5的两种机制都令人满意。 PM2.5的浓度的月均差异小于整个结构域的1μgm≤3(6%)。 PM2.5的二级化学成分包括硫酸盐,硝酸铵,铵和有机气溶胶,PM2.5的化学组成在两种机制之间没有显着差异。每月浓度的无机气溶胶浓度与RACM2高于CB05(硫酸氢+ 16%,硝酸+ 11%,铵+ 10%),而有机气溶胶的浓度略高于CB05,而不是RacM2(人为SOA + 22%,生物素SOA的+ 1%)。无机和有机气溶胶的差异主要来自氧化剂浓度的差异(OH,O3和NO3)。硝酸盐形成趋于HNO3限制在陆地上,硝酸盐浓度的差异是由于HNO3浓度的差异。由芳族SVOC形成的气溶胶差异是由于CBO5和RACM2之间的不同芳族氧化。 CB05中的芳族氧化导致更多的甲酚形成,然后导致更多SOA。甲苯氧化最近的CB05-TU机制,芳香气溶胶的差异将显着降低。生物气溶胶中的差异是由于不同的氧化剂浓度(单萜)和影响SOA(异戊二烯)气体颗粒分配的不同颗粒状有机块浓度。这些结果表明,臭氧的气相化学动力学机制的制剂可以具有显着的直接(例如甲酚形成)和间接(例如,氧化剂水平)对PM形成作用。此外,将SOA掺入现有的气相化学动力学机制需要添加反应和产物物种,这应该仔细地进行原始机制设计,并反映SOA形成过程的当前知识(例如,一些依赖的NOx依赖SOA产量)。建议开发化学动力学机制,为氧化剂和SOA形成提供足够的细节。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号