首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >The representation of solar cycle signals in stratospheric ozone – Part?1: A comparison of recently updated satellite observations
【24h】

The representation of solar cycle signals in stratospheric ozone – Part?1: A comparison of recently updated satellite observations

机译:平流层臭氧中的太阳循环信号的表示 - 部分?1:最近更新的卫星观测的比较

获取原文
           

摘要

Changes in incoming solar ultraviolet radiation over the 11-year solar cycle affect stratospheric ozone abundances. It is important to quantify the magnitude, structure, and seasonality of the associated solar-ozone response (SOR) to understand the impact of the 11-year solar cycle on climate. Part?1 of this two-part study uses multiple linear regression analysis to extract the SOR in a number of recently updated satellite ozone datasets covering different periods within the epoch 1970 to 2013. The annual mean SOR in the updated version?7.0 (v7.0) Stratospheric Aerosol and Gas Experiment (SAGE)?II number density dataset (1984–2004) is very consistent with that found in the previous v6.2. In contrast, we find a substantial decrease in the magnitude of the SOR in the tropical upper stratosphere in the SAGE?II v7.0 mixing ratio dataset (~?1?%) compared to the v6.2 (~?4?%). This difference is shown to be largely attributable to the change in the independent stratospheric temperature dataset used to convert SAGE?II ozone number densities to mixing ratios. Since these temperature records contain substantial uncertainties, we suggest that datasets based on SAGE?II number densities are currently most reliable for evaluating the SOR. We further analyse three extended ozone datasets that combine SAGE?II v7.0 number densities with more recent GOMOS (Global Ozone Monitoring by Occultation of Stars) or OSIRIS (Optical Spectrograph and Infrared Imager System) measurements. The extended SAGE–OSIRIS dataset (1984–2013) shows a smaller and less statistically significant SOR across much of the tropical upper stratosphere compared to the SAGE?II data alone. In contrast, the two SAGE–GOMOS datasets (1984–2011) show SORs that are in closer agreement with the original SAGE?II data and therefore appear to provide a more reliable estimate of the SOR. We also analyse the SOR in the recent Solar Backscatter Ultraviolet Instrument (SBUV) Merged Ozone Dataset (SBUVMOD) version?8.6 (VN8.6) (1970–2012) and SBUV Merged Cohesive VN8.6 (1978–2012) datasets and compare them to the previous SBUVMOD VN8.0 (1970–2009). Over their full lengths, the three records generally agree in terms of the broad magnitude and structure of the annual mean SOR. The main difference is that SBUVMOD VN8.6 shows a smaller and less significant SOR in the tropical upper stratosphere and therefore more closely resembles the SAGE?II v7.0 mixing ratio data than does the SBUV Merged Cohesive VN8.6, which has a more continuous SOR of ~?2?% in this region. The sparse spatial and temporal sampling of limb satellite instruments prohibits the extraction of sub-annual variations in the SOR from SAGE-based datasets. However, the SBUVMOD?VN8.6 dataset suggests substantial month-to-month variations in the SOR, particularly in the winter extratropics, which may be important for the proposed high-latitude dynamical response to the solar cycle. Overall, the results highlight substantial uncertainties in the magnitude and structure of the observed SOR from different satellite records. The implications of these uncertainties for understanding and modelling the effects of solar variability on climate should be explored.
机译:11年太阳循环对太阳紫外线辐射的进入太阳紫外线辐射的变化影响了平流层臭氧丰度。为量化相关的太阳能臭氧响应(SOR)的幅度,结构和季节性非常重要,了解11年太阳循环对气候的影响。本两个部分的一部分?1的第一部分使用多元线性回归分析来提取覆盖2017年至2013年的最近更新的卫星臭氧数据集中的多个卫星臭氧数据集。更新版本中的年平均SOR在更新的版本中?7.0(v7。 0)平流层气溶胶和天然气实验(SAGE)?II数密度数据集(1984-2004)与之前的V6.2中发现非常一致。相比之下,与V6.2相比,我们发现在鼠尾草中的热带上层流层中的SOR幅度的大小减少,与V6.2(〜4?%)相比,数据集(〜?1?%) 。该差异显示在很大程度上是可归因于用于将SAGEαII臭氧数量密度转换为混合比率的独立划分性温度数据集的变化。由于这些温度记录包含了实质性的不确定性,我们建议基于Sage的数据集II数量密度目前最可靠地评估SOR。我们进一步分析了三个扩展臭氧数据集,该数据集结合了Sage?II V7.0的数量密度,以更新的Gomos(通过恒星掩星监测全球臭氧监测)或Osiris(光谱仪和红外成像系统)测量。扩展的Sage-Osiris DataSet(1984-2013)显示与SAGE II数据相比,在大部分热带上层流层上显示了较小且差异的统计学意义。相比之下,两个Sage-Gomos数据集(1984-2011)显示与原始Sage的恰逢其一致的SORE,因此似乎提供了对SOR更可靠的估计。我们还在最近的太阳能反向散射器(SBUV)合并臭氧数据集(SBUVMOD)版本(SBUVMOD)版本(VN8.6)(1970-2012)和SBUV合并凝聚力VN8.6(1978-2012)数据集并比较它们到以前的SBUVMOD VN8.0(1970-2009)。在他们的全长上,三个记录普遍同意年度平均索拉的广泛数量和结构。主要区别在于,SBUVMOD VN8.6在热带上层层上显示了较小且较少的显着的SOR,因此比SAGE?II v7.0混合比数据更接近,并且SBUV合并的凝聚力VN8.6具有更多在这个区域中连续〜2?%。肢体卫星仪器的稀疏空间和时间采样禁止从基于SAGE的数据集中提取SOR中的子年度变化。然而,SBUVMOD?VN8.6数据集表明SOR的大量月份变化,特别是在冬季越野中,这对于对太阳循环的提出的高纬度动态响应可能是重要的。总的来说,结果突出了观察到的SOR的大小和结构的实质性不确定性,来自不同卫星记录。应探讨这些不确定性对理解和建模太阳能变异对气候影响的影响。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号