首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Solar response in tropical stratospheric ozone: a 3-D chemical transport model study using ERA reanalyses
【24h】

Solar response in tropical stratospheric ozone: a 3-D chemical transport model study using ERA reanalyses

机译:热带地流层臭氧的太阳能响应:使用时代Reanalyses的三维化学传输模型研究

获取原文
           

摘要

We have used an off-line 3-D chemical transport model (CTM) to investigate the 11-yr solar cycle response in tropical stratospheric ozone. The model is forced with European Centre for Medium-Range Weather Forecasts (ECMWF) (re)analysis (ERA-40/operational and ERA-Interim) data for the 1979–2005 time period. We have compared the modelled solar response in ozone to observation-based data sets that are constructed using satellite instruments such as Total Ozone Mapping Spectrometer (TOMS), Solar Backscatter UltraViolet instrument (SBUV), Stratospheric Aerosol and Gas Experiment (SAGE) and Halogen Occultation Experiment (HALOE). A significant difference is seen between simulated and observed ozone during the 1980s, which is probably due to inhomogeneities in the ERA-40 reanalyses. In general, the model with ERA-Interim dynamics shows better agreement with the observations from 1990 onwards than with ERA-40. Overall both standard model simulations are partially able to simulate a "double peak"-structured ozone solar response with a minimum around 30 km, and these are in better agreement with HALOE than SAGE-corrected SBUV (SBUV/SAGE) or SAGE-based data sets. In the tropical lower stratosphere (TLS), the modelled solar response with time-varying aerosols is amplified through aliasing with a volcanic signal, as the model overestimates ozone loss during high aerosol loading years. However, the modelled solar response with fixed dynamics and constant aerosols shows a positive signal which is in better agreement with SBUV/SAGE and SAGE-based data sets in the TLS. Our model simulations suggests that photochemistry contributes to the ozone solar response in this region. The largest model-observation differences occur in the upper stratosphere where SBUV/SAGE and SAGE-based data show a significant (up to 4%) solar response whereas the standard model and HALOE do not. This is partly due to a positive solar response in the ECMWF upper stratospheric temperatures which reduces the modelled ozone signal. The large positive upper stratospheric solar response seen in SBUV/SAGE and SAGE-based data can be reproduced in model runs with fixed dynamical fields (i.e. no inter-annual meteorological changes). As these runs effectively assume no long-term temperature changes (solar-induced or otherwise), it should provide an upper limit of the ozone solar response. Overall, full quantification of the solar response in stratospheric ozone is limited by differences in the observed data sets and by uncertainties in the solar response in stratospheric temperatures.
机译:我们使用了一个离线3-D化学传输模型(CTM)来研究热带地流层臭氧的11 yr太阳循环响应。该模型由欧洲中距离(ECMWF)(ECMWF)(ECMWF)(RE)分析(ERA-40 /运营和ERA-INSIM)数据迫使,为1979 - 2005年的时间段进行。我们比较了在臭氧到使用卫星仪器构建的基于观察的数据集,例如臭氧总量绘图分光计,太阳能散射的紫外仪(SBUV),平流层气溶胶和气体实验(SAGE)和卤素掩星建模太阳能响应实验(HALOE)。在20世纪80年代在20世纪80年代模拟和观察到的臭氧之间看到了显着差异,这可能是由于ERA-40 Reanalyses中的不均匀性。通常,具有ERA-Instim动力学的模型表现出与1990年的观察结果更好地与ERA-40开始。整体两个标准模型模拟是部分能够模拟“双峰” -structured臭氧太阳能提高了约30公里最小响应,并且这些在与HALOE比SAGE校正SBUV(SBUV / SAGE)或基于SAGE数据更好协议套。在热带下划线(TLS)中,通过用火山信号均叠加来扩增具有时变气溶胶的模型太阳能响应,因为模型在高气溶胶加载年度期间高估臭氧损失。然而,具有固定动力学和恒定气溶胶的模型太阳能响应显示了正信号,其与TLS中的SBUV / SAGE和基于SAGE的数据集更好。我们的模型模拟表明,光化学促进了该地区的臭氧太阳能响应。最大的模型观察差异发生在上层层中,其中SBUV / Sage和基于SAGE的数据显示出显着的(最多4%)太阳能响应,而标准模型和哈索则没有。这部分是由于ECMWF上层恒定温度的正太阳响应,这减少了模拟的臭氧信号。可以在具有固定动态场的模型运行中再现SBUV / SAGE和基于SAGE数据中的大的正上层梯形太阳能响应(即,没有年度夜间气象变化)。由于这些运行有效地假设没有长期温度变化(太阳能诱导或以其他方式),它应该提供臭氧太阳能响应的上限。总体而言,平流层臭氧中的太阳响应的完全量化受观察到的数据集的差异以及在平坦散温度中的太阳能响应中的不确定性。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号