首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Influence of future climate and cropland expansion on isoprene emissions and tropospheric ozone
【24h】

Influence of future climate and cropland expansion on isoprene emissions and tropospheric ozone

机译:未来气候和农田扩张对异戊二烯排放和对流层臭氧的影响

获取原文
           

摘要

Over the 21st century, changes in CO2 levels, climate and land use are expected to alter the global distribution of vegetation, leading to changes in trace gas emissions from plants, including, importantly, the emissions of isoprene. This, combined with changes in anthropogenic emissions, has the potential to impact tropospheric ozone levels, which above a certain level are harmful to animals and vegetation. In this study we use a biogenic emissions model following the empirical parameterisation of the MEGAN model, with vegetation distributions calculated by the Sheffield Dynamic Global Vegetation Model (SDGVM) to explore a range of potential future (2095) changes in isoprene emissions caused by changes in climate (including natural land use changes), land use, and the inhibition of isoprene emissions by CO2. From the present-day (2000) value of 467 Tg C yr?1, we find that the combined impact of these factors could cause a net decrease in isoprene emissions of 259 Tg C yr?1 (55%) with individual contributions of +78 Tg C yr?1 (climate change), ?190 Tg C yr?1 (land use) and ?147 Tg C yr?1 (CO2 inhibition). Using these isoprene emissions and changes in anthropogenic emissions, a series of integrations is conducted with the UM-UKCA chemistry-climate model with the aim of examining changes in ozone over the 21st century. Globally, all combined future changes cause a decrease in the tropospheric ozone burden of 27 Tg (7%) from 379 Tg in the present-day. At the surface, decreases in ozone of 6–10 ppb are calculated over the oceans and developed northern hemispheric regions, due to reduced NOx transport by PAN and reductions in NOx emissions in these areas respectively. Increases of 4–6 ppb are calculated in the continental tropics due to cropland expansion in these regions, increased CO2 inhibition of isoprene emissions, and higher temperatures due to climate change. These effects outweigh the decreases in tropical ozone caused by increased tropical isoprene emissions with climate change. Our land use change scenario consists of cropland expansion, which is most pronounced in the tropics. The tropics are also where land use change causes the greatest increases in ozone. As such there is potential for increased crop exposure to harmful levels of ozone. However, we find that these ozone increases are still not large enough to raise ozone to such damaging levels.
机译:在21世纪,预计二氧化碳水平,气候和土地利用的变化将改变植被的全球分布,导致植物的痕量气体排放变化,包括重要的异戊二烯排放。这与人为排放的变化相结合具有影响对流层臭氧水平的可能性,这对动物和植被有害。在这项研究中,我们使用梅根模型的经验参数后使用生物发射模型,利用谢菲尔德动态全球植被模型(SDGVM)计算的植被分布来探索一系列潜在的未来(2095)的异戊二烯排放变化引起的气候(包括天然土地使用变化),土地利用和二氧化碳抑制异戊二烯排放量。从现在(2000)的价值467 TG C YR?1,我们发现这些因素的综合影响可能导致异戊二烯排放量的净减少259 TG C YR?1(55%),其个人贡献+ 78 TG C YR?1(气候变化),?190 TG C YR?1(土地使用)和?147 TG C YR?1(CO2抑制)。利用这些异戊二烯排放和人为排放的变化,通过UM-UKCA化学 - 气候模型进行了一系列集成,目的是在21世纪的臭氧中检查臭氧的变化。在全球范围内,所有组合的未来变化导致在当今379 TG的379 TG中减少了27 TG(7%)的流动性。在表面上,臭氧减少6-10ppb,在海洋上计算,并且在北半球区域开发,由于泛曲线减少了NOx运输并分别在这些区域的NOx排放中减少。由于这些地区的农作物扩张,在大陆热带地区计算了4-6个PPB的增加,增加了二氧化碳排放的二氧化碳抑制,以及由于气候变化导致的较高温度。这些效果超过了热带臭氧的降低,引起了气候变化的热带异戊二烯排放量增加。我们的土地利用变更场景包括耕地扩张,在热带地区最明显。土地使用变化导致臭氧最大的热带地区也是如此。因此,有可能增加作物暴露于有害水平的臭氧。然而,我们发现这些臭氧的增加仍然不足以向这种破坏性水平提高臭氧。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号