首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Potential of European 14CO2 observation network to estimate the fossil fuel CO2 emissions via atmospheric inversions
【24h】

Potential of European 14CO2 observation network to estimate the fossil fuel CO2 emissions via atmospheric inversions

机译:欧洲14Co2观测网络的潜力通过大气反转来估算化石燃料二氧化碳排放量

获取原文
       

摘要

Combining measurements of atmospheric CO2 and its radiocarbon (14CO2) fraction and transport modeling in atmospheric inversions offers a way to derive improved estimates of CO2 emitted from fossil fuel (FFCO2). In this study, we solve for the monthly FFCO2 emission budgets at regional scale (i.e., the size of a medium-sized country in Europe) and investigate the performance of different observation networks and sampling strategies across Europe. The inversion system is built on the LMDZv4 global transport model at 3.75°×2.5° resolution. We conduct Observing System Simulation Experiments (OSSEs) and use two types of diagnostics to assess the potential of the observation and inverse modeling frameworks. The first one relies on the theoretical computation of the uncertainty in the estimate of emissions from the inversion, known as “posterior uncertainty”, and on the uncertainty reduction compared to the uncertainty in the inventories of these emissions, which are used as a prior knowledge by the inversion (called “prior uncertainty”). The second one is based on comparisons of prior and posterior estimates of the emission to synthetic “true” emissions when these true emissions are used beforehand to generate the synthetic fossil fuel CO2 mixing ratio measurements that are assimilated in the inversion. With 17?stations currently measuring 14CO2 across Europe using 2-week integrated sampling, the uncertainty reduction for monthly FFCO2 emissions in a country where the network is rather dense like Germany, is larger than 30%. With the 43?14CO2 measurement stations planned in Europe, the uncertainty reduction for monthly FFCO2 emissions is increased for the UK, France, Italy, eastern Europe and the Balkans, depending on the configuration of prior uncertainty. Further increasing the number of stations or the sampling frequency improves the uncertainty reduction (up to 40 to 70%) in high emitting regions, but the performance of the inversion remains limited over low-emitting regions, even assuming a dense observation network covering the whole of Europe. This study also shows that both the theoretical uncertainty reduction (and resulting posterior uncertainty) from the inversion and the posterior estimate of emissions itself, for a given prior and “true” estimate of the emissions, are highly sensitive to the choice between two configurations of the prior uncertainty derived from the general estimate by inventory compilers or computations on existing inventories. In particular, when the configuration of the prior uncertainty statistics in the inversion system does not match the difference between these prior and true estimates, the posterior estimate of emissions deviates significantly from the truth. This highlights the difficulty of filtering the targeted signal in the model–data misfit for this specific inversion framework, the need to strongly rely on the prior uncertainty characterization for this and, consequently, the need for improved estimates of the uncertainties in current emission inventories for real applications with actual data. We apply the posterior uncertainty in annual emissions to the problem of detecting a trend of FFCO2, showing that increasing the monitoring period (e.g., more than 20?years) is more efficient than reducing uncertainty in annual emissions by adding stations. The coarse spatial resolution of the atmospheric transport model used in this OSSE (typical of models used for global inversions of natural CO2 fluxes) leads to large representation errors (related to the inability of the transport model to capture the spatial variability of the actual fluxes and mixing ratios at subgrid scales), which is a key limitation of our OSSE setup to improve the accuracy of the monitoring of FFCO2 emissions in European regions. Using a high-resolution transport model should improve the potential to retrieve FFCO2 emissions, and this needs to be investigated.
机译:结合大气中的二氧化碳和放射性碳(14 ​​CO 2)部分和交通建模测量大气反演提供了一种方法,从化石燃料(FFCO2)排放的二氧化碳导出改进的估计。在这项研究中,我们解决了在区域尺度上(即在欧洲中等国家的规模),并探讨不同观测网络的整个欧洲的表现和取样策略月度FFCO2排放预算。反演系统在3.75°×2.5°分辨率建立在LMDZv4全球运输模式。我们进行了观测系统模拟试验(OSSE),并使用两种类型的诊断评估的观察和逆建模框架的潜力。第一种依赖于从逆变换,被称为“后不确定性”的排放量的估算的不确定性的理论计算,并与在这些排放的库存,这是用来作为现有知识的不确定性的减少不确定性通过反转(称为“现有的不确定性”)。第二个是基于所述发射到合成的“真正的”排放的先验和后验估计进行比较,当这些真实排放预先用于产生合成的矿物燃料混合的CO 2被在反演同化率测量。随着17?站目前使用2周的综合取样的不确定性降低了在一个国家每月FFCO2排放,其中网络是相当密集,如德国测量整个欧洲的14 CO 2,是大于30%。在欧洲规划了43?14个CO测量站,每月FFCO2排放的不确定性减少取决于之前的不确定性的配置为英国,法国,意大利,东欧和巴尔干增加。进一步增加站的数量或采样频率提高了高发光区的不确定性的减少(高达40%至70%),但反转仍然有限通过低发射区的性能,即使假定致密观测网络覆盖欧洲。这项研究还表明,无论是从反转的理论不确定性减少(和所得的后部不确定性)和排放本身的后验估计,对于排放的给定事先和“真”的估计,是两种配置之间进行的选择高度敏感从由清单编制或对现有库存计算,一般估计导出现有的不确定性。特别是,当在反转系统的现有的不确定性的统计数据的配置不匹配这些现有和真估计之间的差,排放的后验估计显著从道理偏离。这凸显过滤模型中的数据失配目标信号,这个特定的反转框架的难度,需要强烈依赖于之前的不确定性特征,这和,因此,在当前排放清单的不确定性的改善估计需要实际应用与实际数据。我们应用在每年排放后不确定性的检测FFCO2的趋势,显示出增加的监视周期(例如,大于20?年)比通过添加站减少每年排放的不确定性更有效的问题。在此OSSE(典型的用于天然CO2通量的全球反演模型)导致大的代表性误差(与无力运输模型所使用的大气输送模式的粗空间分辨率来获得实际通量的空间变异和在子网格鳞的混合比),这是我们OSSE设置的关键限制,以改善在欧洲地区FFCO2排放监控的准确性。使用高解析度的传输模式应提高的潜力检索FFCO2排放,这需要进行调查。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号