...
首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Mass-based hygroscopicity parameter interaction model and measurement of atmospheric aerosol water uptake
【24h】

Mass-based hygroscopicity parameter interaction model and measurement of atmospheric aerosol water uptake

机译:大规模的吸湿性参数相互作用模型及大气气溶胶水吸收测量

获取原文
   

获取外文期刊封面封底 >>

       

摘要

In this study we derive and apply a mass-based hygroscopicity parameter interaction model for efficient description of concentration-dependent water uptake by atmospheric aerosol particles with complex chemical composition. The model approach builds on the single hygroscopicity parameter model of Petters and Kreidenweis (2007). We introduce an observable mass-based hygroscopicity parameter m which can be deconvoluted into a dilute hygroscopicity parameter (m0) and additional self- and cross-interaction parameters describing non-ideal solution behavior and concentration dependencies of single- and multi-component systems. For reference aerosol samples of sodium chloride and ammonium sulfate, the m-interaction model (KIM) captures the experimentally observed concentration and humidity dependence of the hygroscopicity parameter and is in good agreement with an accurate reference model based on the Pitzer ion-interaction approach (Aerosol Inorganic Model, AIM). Experimental results for pure organic particles (malonic acid, levoglucosan) and for mixed organic-inorganic particles (malonic acid – ammonium sulfate) are also well reproduced by KIM, taking into account apparent or equilibrium solubilities for stepwise or gradual deliquescence and efflorescence transitions. The mixed organic-inorganic particles as well as atmospheric aerosol samples exhibit three distinctly different regimes of hygroscopicity: (I) a quasi-eutonic deliquescence & efflorescence regime at low-humidity where substances are just partly dissolved and exist also in a non-dissolved phase, (II) a gradual deliquescence & efflorescence regime at intermediate humidity where different solutes undergo gradual dissolution or solidification in the aqueous phase; and (III) a dilute regime at high humidity where the solutes are fully dissolved approaching their dilute hygroscopicity. For atmospheric aerosol samples collected from boreal rural air and from pristine tropical rainforest air (secondary organic aerosol) we present first mass-based measurements of water uptake over a wide range of relative humidity (1–99.4%) obtained with a new filter-based differential hygroscopicity analyzer (FDHA) technique. For these samples the concentration dependence of m can be described by a simple KIM model equation based on observable mass growth factors and a total of only six fit parameters summarizing the combined effects of the dilute hygroscopicity parameters, self- and cross-interaction parameters, and solubilities of all involved chemical components. One of the fit parameters represents m0 and can be used to predict critical dry diameters for the activation of cloud condensation nuclei (CCN) as a function of water vapor supersaturation according to K?hler theory. For sodium chloride and ammonium sulfate reference particles as well as for pristine rainforest aerosols consisting mostly of secondary organic matter, we obtained good agreement between the KIM predictions and measurement data of CCN activation. The application of KIM and mass-based measurement techniques shall help to bridge gaps in the current understanding of water uptake by atmospheric aerosols: (1) the gap between hygroscopicity parameters determined by hygroscopic growth measurements under sub-saturated conditions and by CCN activation measurements at water vapor supersaturation, and (2) the gap between the results of simplified single parameter models widely used in atmospheric or climate science and the results of complex multi-parameter ion- and molecule-interaction models frequently used in physical chemistry and solution thermodynamics (e.g., AIM, E-AIM, ADDEM, UNIFAC, AIOMFAC).
机译:在这项研究中,我们得出并施加基于质量的吸湿性参数相互作用相互作用,以便通过大气气溶胶颗粒具有复杂化学成分的浓度依赖性水吸收的有效描述。模型方法构建了Petters和Kreidenweis(2007)的单一吸湿性参数模型。我们介绍了可观察到的基于批量的吸湿性参数M,其可以被解作被解码成稀释的吸湿性参数(M0)以及描述单个和多分量系统的非理想解决方案行为和浓度依赖性的附加自我和交互参数。用于参考氯化钠和硫酸铵的气溶胶样品,M型相互作用模型(KIM)捕获了湿润程度参数的实验观察到的浓度和湿度依赖性,并与基于Pitzer离子交互方法的准确参考模型吻合良好(气溶胶无机模型,目标)。纯有机颗粒(丙酸,左葡聚糖)和混合有机 - 无机颗粒(丙酸铵 - 硫酸盐)的实验结果也是Kim的良好的,考虑了逐步或逐渐潮解和膨胀的转变的明显或平衡溶解度。混合的有机无机颗粒以及大气气溶胶样品具有三个明显不同的吸湿性制度:(i)在低湿度下的准潮潮潮解和风化状态,其中物质刚刚分离并存在于非溶解相中(ii)(ii)在中间湿度下的逐渐潮解和风化状态,其中不同溶质在水相中经历逐渐溶解或凝固; (iii)在高湿度下稀释的状态,其中溶质完全溶解接近其稀释的吸湿性。对于从北方乡村空气收集的大气气溶胶样品以及原始的热带雨林空气(二次有机气溶胶),我们首先通过新的滤波器获得的宽范围的相对湿度(1-99.4%)提供基于群众的水吸收测量差分吸湿性分析仪(FDHA)技术。对于这些样品,可以通过基于可观察的质量生长因子的简单KIM模型方程来描述M的浓度依赖性,并且总共只有六个拟合参数总结了稀释的吸湿性参数,自带和交互参数的组合效果,以及所有涉及的化学成分的溶解度。其中一个配合参数表示M0,可用于预测临界干燥直径,用于根据K·赫勒理论作为水蒸气过饱和的函数的致核凝聚核(CCN)。对于氯化钠和硫酸铵参考颗粒以及主要是二次有机物质组成的原始雨林气溶胶,我们在CCN激活的Kim预测和测量数据之间获得了良好的一致性。基于KIM和基于群众的测量技术的应用应有助于通过大气气溶胶对水吸收的了解弥补差距:(1)吸湿性参数之间的间隙通过在亚饱和条件下和CCN激活测量下的吸湿生长测量确定。水蒸气过饱和度,(2)简化单个参数模型的结果之间的差距广泛用于大气或气候科学以及经常用于物理化学和溶液热力学中的复杂多参数离子和分子交互模型的结果(例如,目标,电子目标,加载物,unifac,aiomfac)。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号