首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >OH chemistry of non-methane organic gases (NMOGs) emitted from laboratory and ambient biomass burning smoke: evaluating the influence of furans and oxygenated aromatics on ozone and secondary NMOG formation
【24h】

OH chemistry of non-methane organic gases (NMOGs) emitted from laboratory and ambient biomass burning smoke: evaluating the influence of furans and oxygenated aromatics on ozone and secondary NMOG formation

机译:OH化学非甲烷有机气体(NMOGS)从实验室和环境生物质燃烧烟雾发出:评估呋喃和含氧芳烃对臭氧和次级NMOG形成的影响

获取原文
           

摘要

Chamber oxidation experiments conducted at the Fire Sciences Laboratory in 2016 are evaluated to identify important chemical processes contributing to the hydroxy radical (OH) chemistry of biomass burning non-methane organic gases (NMOGs). Based on the decay of primary carbon measured by proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS), it is confirmed that furans and oxygenated aromatics are among the NMOGs emitted from western United States fuel types with the highest reactivities towards OH. The oxidation processes and formation of secondary NMOG masses measured by PTR-ToF-MS and iodide-clustering time-of-flight chemical ionization mass spectrometry (I-CIMS) is interpreted using a box model employing a modified version of the Master Chemical Mechanism (v.?3.3.1) that includes the OH oxidation of furan, 2-methylfuran, 2,5-dimethylfuran, furfural, 5-methylfurfural, and guaiacol. The model supports the assignment of major PTR-ToF-MS and I-CIMS signals to a series of anhydrides and hydroxy furanones formed primarily through furan chemistry. This mechanism is applied to a Lagrangian box model used previously to model a real biomass burning plume. The customized mechanism reproduces the decay of furans and oxygenated aromatics and the formation of secondary NMOGs, such as maleic anhydride. Based on model simulations conducted with and without furans, it is estimated that furans contributed up to 10% of ozone and over 90% of maleic anhydride formed within the first 4h of oxidation. It is shown that maleic anhydride is present in a biomass burning plume transported over several days, which demonstrates the utility of anhydrides as markers for aged biomass burning plumes.
机译:评估在消防科学实验室进行的腔室氧化实验,以确定有助于生物质燃烧非甲烷有机气体(NMOG)的羟基自由基(OH)化学的重要化学过程。基于由质子转移反应飞行时间质谱(PTR-TOF-MS)测量的初级碳的衰减,证实呋喃和含氧芳烃是从西部美国燃料类型发出的纽曲,具有最高的收集走向哦。通过PTR-TOF-MS和碘化物聚类飞行时间化学电离质谱(I-CIMS)测量的二次NMOG质量的氧化方法和形成使用采用MAST化学机制的改进版本的箱体模型来解释( V.?3.3.1)包括呋喃,2-甲基呋喃,2,5-二甲基呋喃,糠醛,5-甲基糠醛和愈菌醇的OH氧化。该模型支持将主要PTR-TOF-MS和I-CIMS信号分配给主要通过呋喃化学形成的一系列酸酐和羟基呋喃酮。这种机制应用于以前用于模拟真正生物量燃烧羽流的拉格朗日箱式模型。定制机制可再现呋喃和含氧芳烃的衰减以及次级氮素的形成,例如马来酸酐。基于使用和无呋喃进行的模型模拟,估计呋喃的含量高达10%的臭氧和超过90%的马来酸酐在氧化的前4H中形成。结果表明,马来酸酐存在于几天内运输的生物质燃烧的羽流中,这证明了酸酐作为用于老化生物质燃烧羽毛的标记的效用。
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号