首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Nine years of global hydrocarbon emissions based on source inversion of OMI formaldehyde observations
【24h】

Nine years of global hydrocarbon emissions based on source inversion of OMI formaldehyde observations

机译:基于OMI甲醛观测的源反演的全球碳氢化合物排放九年

获取原文
           

摘要

As formaldehyde (HCHO) is a high-yield product in the oxidation of most volatile organic compounds (VOCs) emitted by fires, vegetation, and anthropogenic activities, satellite observations of HCHO are well-suited to inform us on the spatial and temporal variability of the underlying VOC sources. The long record of space-based HCHO column observations from the Ozone Monitoring Instrument (OMI) is used to infer emission flux estimates from pyrogenic and biogenic volatile organic compounds (VOCs) on the global scale over 2005–2013. This is realized through the method of source inverse modeling, which consists in the optimization of emissions in a chemistry-transport model (CTM) in order to minimize the discrepancy between the observed and modeled HCHO columns. The top–down fluxes are derived in the global CTM IMAGESv2 by an iterative minimization algorithm based on the full adjoint of IMAGESv2, starting from a priori emission estimates provided by the newly released GFED4s (Global Fire Emission Database, version 4s) inventory for fires, and by the MEGAN-MOHYCAN inventory for isoprene emissions. The top–down fluxes are compared to two independent inventories for fire (GFAS and FINNv1.5) and isoprene emissions (MEGAN-MACC and GUESS-ES). The inversion indicates a moderate decrease (ca. 20?%) in the average annual global fire and isoprene emissions, from 2028?Tg C in the a priori to 1653?Tg C for burned biomass, and from 343 to 272?Tg for isoprene fluxes. Those estimates are acknowledged to depend on the accuracy of formaldehyde data, as well as on the assumed fire emission factors and the oxidation mechanisms leading to HCHO production. Strongly decreased top–down fire fluxes (30–50?%) are inferred in the peak fire season in Africa and during years with strong a priori fluxes associated with forest fires in Amazonia (in 2005, 2007, and 2010), bushfires in Australia (in 2006 and 2011), and peat burning in Indonesia (in 2006 and 2009), whereas generally increased fluxes are suggested in Indochina and during the 2007 fires in southern Europe. Moreover, changes in fire seasonal patterns are suggested; e.g., the seasonal amplitude is reduced over southeast Asia. In Africa, the inversion indicates increased fluxes due to agricultural fires and decreased maxima when natural fires are dominant. The top–down fire emissions are much better correlated with MODIS fire counts than the a priori inventory in regions with small and agricultural fires, indicating that the OMI-based inversion is well-suited to assess the associated emissions. Regarding biogenic sources, significant reductions in isoprene fluxes are inferred in tropical ecosystems (30–40?%), suggesting overestimated basal emission rates in those areas in the bottom–up inventory, whereas strongly positive isoprene emission updates are derived over semiarid and desert areas, especially in southern Africa and Australia. This finding suggests that the parameterization of the soil moisture stress used in MEGAN greatly exaggerates the flux reduction due to drought in those regions. The isoprene emission trends over 2005–2013 are often enhanced after optimization, with positive top–down trends in Siberia (4.2?%?year?1) and eastern Europe (3.9?%?year?1), likely reflecting forest expansion and warming temperatures, and negative trends in Amazonia (?2.1?%?year?1), south China (?1?%?year?1), the United States (?3.7?%?year?1), and western Europe (?3.3?%?year?1), which are generally corroborated by independent studies, yet their interpretation warrants further investigation.
机译:甲醛(HCHO)是在大多数挥发性有机化合物由火灾,植被和人类活动发射(VOC)的,HCHO的卫星观测氧化的高产量产品都非常适合于通知我们的空间和时间变化底层VOC的来源。从臭氧监测仪(OMI)基于空间的HCHO柱观测的长记录在2005 - 2013年用于推断排放通量估计从在全球范围内的热解和生物挥发性有机化合物(VOC)。这是通过源逆建模,这在于在化学传输模型(CTM)的排放量的优化,以最小化所观察到的和模型化HCHO列之间的差异的方法来实现。自上而下的通量得出全球CTM IMAGESv2基于IMAGESv2的全伴随,从最新发布的GFED4s为火灾提供(全球火灾排放数据库,版本4S)库存先验排放估算开始迭代最小化算法,和由异戊二烯排放MEGAN-MOHYCAN库存。自顶向下的通量相比,火灾两个独立的库存量(GFAS和FINNv1.5)和异戊二烯排放(MEGAN-MACC和GUESS-ES)。反转表示平均每年全球火灾和异戊二烯排放中度降低(约20?%),从2028?的Tg下,在先验到1653?的Tg下进行烧生物质,以及从343到272?的Tg异戊二烯通量。这些估计是公认的依赖甲醛数据的准确性,以及对假定的火灾排放因子和导致甲醛生产氧化机制。在澳大利亚强烈减少自上而下的火通量(30-50?%)在非洲峰火赛季中具有较强的先验通量年,亚马逊森林大火相关联的推断(2005年,2007年和2010),森林大火(2006年和2011年),和泥炭燃烧在印度尼西亚(2006年和2009年),而普遍增加通量在印度支那,并在欧洲南部的大火2007年提出。此外,在发生火灾的季节模式的改革建议;例如,季节性振幅超过南洋降低。在非洲,反转指示增加,由于农业大火通量,降低最大值时自然火灾是占主导地位。自上而下的火灾排放好得多比与小和农业火灾地区先验库存MODIS火计数相关,这表明基于OMI反转是非常适合于评估相关的排放量。对于生物来源,异戊二烯通量显著减少被推断在热带生态系统(30-40?%),这表明在自下而上盘点这些地区高估的基础排放率,而强阳性异戊二烯排放更新衍生了半干旱和沙漠地区,特别是在南部非洲和澳大利亚。这一发现表明,在使用MEGAN土壤水分应力的参数大大夸大了磁通减少因干旱在那些区域。在2005 - 2013年的异戊二烯排放趋势优化后往往增强,正自上而下西伯利亚趋势(4.2?%?年?1)和东欧(3.9?%?年?1),这可能反映了扩大森林面积和气候变暖温度和亚马逊消极趋势(?2.1?%?年?1),中国南方(?1?%?年?1),美国(?3.7?%?年?1)和西欧(? 3.3?%?年?1),其通常由独立的研究,但他们的解释需要进一步的研究证实。
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号