首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Relating large-scale subsidence to convection development in Arctic mixed-phase marine stratocumulus
【24h】

Relating large-scale subsidence to convection development in Arctic mixed-phase marine stratocumulus

机译:在北极混合阶段海洋划分中对对流发育的大规模沉降

获取原文
           

摘要

Large-scale subsidence, associated with high-pressure systems, is often imposed in large-eddy simulation (LES) models to maintain the height of boundary layer (BL) clouds. Previous studies have considered the influence of subsidence on warm liquid clouds in subtropical regions; however, the relationship between subsidence and mixed-phase cloud microphysics has not specifically been studied. For the first time, we investigate how widespread subsidence associated with synoptic-scale meteorological features can affect the microphysics of Arctic mixed-phase marine stratocumulus (Sc) clouds. Modelled with LES, four idealised scenarios – a stable Sc, varied droplet (Ndrop) or ice (Nice) number concentrations, and a warming surface (representing motion southwards) – were subjected to different levels of subsidence to investigate the cloud microphysical response. We find strong sensitivities to large-scale subsidence, indicating that high-pressure systems in the ocean-exposed Arctic regions have the potential to generate turbulence and changes in cloud microphysics in any resident BL mixed-phase clouds.Increased cloud convection is modelled with increased subsidence, driven by longwave radiative cooling at cloud top and rain evaporative cooling and latent heating from snow growth below cloud. Subsidence strengthens the BL temperature inversion, thus reducing entrainment and allowing the liquid- and ice-water paths (LWPs, IWPs) to increase. Through increased cloud-top radiative cooling and subsequent convective overturning, precipitation production is enhanced: rain particle number concentrations (Nrain), in-cloud rain mass production rates, and below-cloud evaporation rates increase with increased subsidence.Ice number concentrations (Nice) play an important role, as greater concentrations suppress the liquid phase; therefore, Nice acts to mediate the strength of turbulent overturning promoted by increased subsidence. With a warming surface, a lack of – or low – subsidence allows for rapid BL turbulent kinetic energy (TKE) coupling, leading to a heterogeneous cloud layer, cloud-top ascent, and cumuli formation below the Sc cloud. In these scenarios, higher levels of subsidence act to stabilise the Sc layer, where the combination of these two forcings counteract one another to produce a stable, yet dynamic, cloud layer.
机译:与高压系统相关的大规模沉降通常施加在大涡模拟(LES)模型中,以保持边界层(BL)云的高度。以前的研究考虑了沉降对亚热带地区温热液体云的影响;然而,沉降和混合阶段云微妙之间的关系尚未具体研究。我们首次调查与稳定气象特征的广泛沉降沉降程度如何影响北极混合相海洋划线(SC)云的微生物。用LES,四种理想情况进行建模 - 稳定的SC,各种液滴(NDROP)或冰(漂亮的)数量浓度,以及温暖的表面(代表行动向南) - 受到不同的沉降水平来研究云微动态反应。我们发现强烈的敏感性对大规模沉降,表明海洋暴露的北极地区的高压系统具有产生任何驻留BL混合相云中的云微妙的湍流和变化。增加云对流随着增加的建模模型沉降,由云顶部的龙波辐射冷却驱动,雨水蒸发冷却和云层低于云下的雪生长潜伏。沉降增强了BL温度反转,从而减少了夹带并允许液体和冰水路径(LWP,IWP)增加。通过增加云层辐射冷却和随后的对流翻转,降水量增强:雨粒子数量浓度(Nrain),云雨大规模生产率,低于云蒸发率增加随着沉降数量浓度(漂亮)发挥重要作用,随着更大的浓度抑制液相;因此,很好的行为介绍了增加沉降促进的动荡推翻的力量。具有变暖表面,缺乏 - 或低位允许快速的BL湍流动能(TKE)耦合,导致SC云下方的异质云层,云顶上升和模糊形成。在这些场景中,较高水平的沉降行为来稳定SC层,其中这两个强制的组合互相抵消,以产生稳定但动态,云层。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号