首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Photosynthesis-dependent isoprene emission from leaf to planet in a global carbon-chemistry-climate model
【24h】

Photosynthesis-dependent isoprene emission from leaf to planet in a global carbon-chemistry-climate model

机译:在全球碳化学 - 气候模型中,光合作用依赖性异戊二烯排放叶片到行星

获取原文
           

摘要

We describe the implementation of a biochemical model of isoprene emission that depends on the electron requirement for isoprene synthesis into the Farquhar–Ball–Berry leaf model of photosynthesis and stomatal conductance that is embedded within a global chemistry-climate simulation framework. The isoprene production is calculated as a function of electron transport-limited photosynthesis, intercellular and atmospheric carbon dioxide concentration, and canopy temperature. The vegetation biophysics module computes the photosynthetic uptake of carbon dioxide coupled with the transpiration of water vapor and the isoprene emission rate at the 30 min physical integration time step of the global chemistry-climate model. In the model, the rate of carbon assimilation provides the dominant control on isoprene emission variability over canopy temperature. A control simulation representative of the present-day climatic state that uses 8 plant functional types (PFTs), prescribed phenology and generic PFT-specific isoprene emission potentials (fraction of electrons available for isoprene synthesis) reproduces 50% of the variability across different ecosystems and seasons in a global database of 28 measured campaign-average fluxes. Compared to time-varying isoprene flux measurements at 9 select sites, the model authentically captures the observed variability in the 30 min average diurnal cycle (R2 = 64–96%) and simulates the flux magnitude to within a factor of 2. The control run yields a global isoprene source strength of 451 TgC yr?1 that increases by 30% in the artificial absence of plant water stress and by 55% for potential natural vegetation.
机译:我们描述了异戊二烯排放生化模型的实施,其取决于异戊二烯合成的电子需求,进入Farquhar-Ball-Berry叶模型的光合作用和气孔电导内嵌入在全球化学气候模拟框架内。异戊二烯生产作为电子传输限制光合作用,细胞间和大气二氧化碳浓度和冠层温度计算。植被生物物理模块计算全球化学气候模型的30分钟物理集成时间步骤的水蒸气蒸腾和异戊二烯排放率耦合的二氧化碳的光合吸收。在该模型中,碳同化率为冠层温度的异戊二烯排放变异性提供了显性控制。代表使用8种植物功能类型(PFT),规定的酚类学和特异性异戊二烯排放电位(可用于异戊二烯合成的电子的一部分)的对照模拟,以不同的生态系统和不同生态系统的可变异性的50%季节在全球数据库中为28个测量的竞选平均通量。与9个选择网站时的时变异戊二烯磁通测量相比,该模型在30分钟平均场平均循环(R2 = 64-96%)中真实地捕获观察到的可变性,并在2.控制运行中模拟通量幅度。产生全球异戊二烯源强度为451吨TGC YRα1,其潜在的自然植被的人为水分胁迫的缺乏增加30%。
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号