首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >An empirical model of nitric oxide in the upper mesosphere and lower thermosphere based on 12 years of Odin?SMR measurements
【24h】

An empirical model of nitric oxide in the upper mesosphere and lower thermosphere based on 12 years of Odin?SMR measurements

机译:基于12年的Odin of Odin的上部介质圈层和较低的热层一直氧化氮的经验模型?SMR测量

获取原文
           

摘要

Nitric oxide (NO) is produced by solar photolysis and auroral activity in the upper mesosphere and lower thermosphere region and can, via transport processes, eventually impact the ozone layer in the stratosphere. This work uses measurements of NO taken between 2004 and 2016 by the Odin sub-millimeter radiometer (SMR) to build an empirical model that links the prevailing solar and auroral conditions with the measured number density of NO. The measurement data are averaged daily and sorted into altitude and magnetic latitude bins. For each bin, a multivariate linear fit with five inputs, the planetary K?index, solar declination, and the F10.7cm flux, as well as two newly devised indices that take the planetary K?index and the solar declination as inputs in order to take NO created on previous days into account, constitutes the link between environmental conditions and measured NO. This results in a new empirical model, SANOMA, which only requires the three indices to estimate NO between 85 and 115km and between 80°S and 80°N in magnetic latitude. Furthermore, this work compares the NO calculated with SANOMA and an older model, NOEM, with measurements of the original SMR dataset, as well as measurements from four other instruments: ACE, MIPAS, SCIAMACHY, and SOFIE. The results suggest that SANOMA can capture roughly 31%–70% of the variance of the measured datasets near the magnetic poles, and between 16% and 73% near the magnetic equator. The corresponding values for NOEM are 12%–38% and 7%–40%, indicating that SANOMA captures more of the variance of the measured datasets than NOEM. The simulated NO for these regions was on average 20% larger for SANOMA, and 78% larger for NOEM, than the measured NO. Two main reasons for SANOMA outperforming NOEM are identified. Firstly, the input data (Odin SMR NO) for SANOMA span over 12 years, while the input data for NOEM from the Student Nitric Oxide Experiment (SNOE) only cover 1998–2000. Additionally, some of the improvement can be accredited to the introduction of the two new indices, since they include information of auroral activity on prior days that can significantly enhance the number density of NO in the MLT during winter in the absence of sunlight. As a next step, SANOMA could be used as input in chemical models, as a?priori information for the retrieval of NO from measurements, or as a tool to compare Odin SMR NO with other instruments. SANOMA and accompanying scripts are available on http://odin.rss.chalmers.se (last access: 15?September?2018).
机译:通过太阳能光解和较低的热层区域中的太阳光解和极光活性产生一氧化氮(NO),并且通过运输过程可以通过运输过程来产生影响平流层中的臭氧层。这项工作使用Odin子 - 毫米辐射计(SMR)在2004和2016之间采取的测量,以构建一个经验模型,将普遍的太阳能和极光条件与测量的数量密度联系起来。测量数据每日平均并分类为高度和磁纬度箱。对于每个垃圾箱,具有五个输入的多变量线性配合,行星k?指数,太阳能偏降和F10.7cm通量,以及从行星k的两个新设计的指数,作为输入的索引和太阳倾斜作为输入要考虑到之前没有创建,构成环境条件之间的联系并测量。这导致新的经验模型,SanoMa,其仅需要三个索引来估计85到115公里,并且在磁纬度下80°S和80°N之间。此外,这项工作比较了使用Sanoma和旧模型,Noem计算的No Noem,以及来自原始SMR数据集的测量,以及来自四个其他仪器的测量:ACE,MIPAS,Sciamachy和Sofie。结果表明,Sanoma可以在磁极附近的测量数据集差异的大约31%-70%,磁性赤道附近的16%和73%之间。 Neem的相应值为12%-38%和7%-40%,表明Sanoma捕获了比Noem更多的数据集的变化。对于这些地区的模拟不平均出现20%,对于Sanoma平均较大,对于Noem而言,78%比测量的NO更大。鉴定了Sanoma优先表现优于Noem的两种主要原因。首先,3年内的出生跨度的输入数据(ODIN SMR号码),而学生一氧化氮实验(SNOE)的NOEM的输入数据仅涵盖了1998-2000。此外,一些改进可以认证到引入两种新指数,因为它们包括在冬季在冬季的冬季冬季显着提高MLT中NO的数量密度的耳动活动的信息。作为下一步,Sanoma可以用作化学模型中的输入,作为a?先验的信息,用于从测量中检索NO,或作为将ODIN SMR与其他仪器进行比较的工具。 Http://Din.rss.chalmers.se提供了Sanoma和伴奏脚本(上次访问:15?9月?2018)。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号