首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Snow cover sensitivity to black carbon deposition in the Himalayas: from atmospheric and ice core measurements to regional climate simulations
【24h】

Snow cover sensitivity to black carbon deposition in the Himalayas: from atmospheric and ice core measurements to regional climate simulations

机译:雪覆盖着喜马拉雅山的黑碳沉积的敏感性:从大气和冰核测量到区域气候模拟

获取原文
           

摘要

We applied a climate-chemistry global model to evaluate the impact of black carbon (BC) deposition on the Himalayan snow cover from 1998 to 2008. Using a stretched grid with a resolution of 50 km over this complex topography, the model reproduces reasonably well the remotely sensed observations of the snow cover duration. Similar to observations, modelled atmospheric BC concentrations in the central Himalayas reach a minimum during the monsoon and a maximum during the post- and pre-monsoon periods. Comparing the simulated BC concentrations in the snow with observations is more challenging because of their high spatial variability and complex vertical distribution. We simulated spring BC concentrations in surface snow varying from tens to hundreds of μg kg?1, higher by one to two orders of magnitude than those observed in ice cores extracted from central Himalayan glaciers at high elevations (6000 m a.s.l.), but typical for seasonal snow cover sampled in middle elevation regions (6000 m a.s.l.). In these areas, we estimate that both wet and dry BC depositions affect the Himalayan snow cover reducing its annual duration by 1 to 8 days. In our simulations, the effect of anthropogenic BC deposition on snow is quite low over the Tibetan Plateau because this area is only sparsely snow covered. However, the impact becomes larger along the entire Hindu-Kush, Karakorum and Himalayan mountain ranges. In these regions, BC in snow induces an increase of the net short-wave radiation at the surface with an annual mean of 1 to 3 W m?2 leading to a localised warming between 0.05 and 0.3 °C.
机译:我们应用了气候化学全球模型,从1998年到2008年评估了黑碳(BC)沉积对喜马拉雅雪覆盖的影响。在这种复杂的地形上使用伸展电网50公里的分辨率,该模型可相当好转远程感知雪覆盖持续时间的观察。类似于观察结果,中央喜马拉雅山的模型大气BC浓度在季风期间达到最低限度,并且在后期和季齐全期间最大。由于其高空间变异性和复杂的垂直分布,比较雪中的模拟的BC浓度与观测更具挑战性。我们模拟了春天的BC浓度在表面上的雪中变化从数度到数十个kg?1,比从高升高(> 6000米ASL)中的中央喜马拉雅山冰川中提取的冰芯中观察到的数量率高一到两个数量级。但是典型的对于中海拔地区(6000米ASL)采样的季节性雪盖。在这些领域,我们估计潮湿和干燥的BC沉积既影响喜马拉雅雪覆盖率将其年度持续时间降低1至8天。在我们的模拟中,人为BC沉积在雪地上的效果在藏高的高原上很低,因为这个区域只是稀疏的雪覆盖。然而,沿着整个印度教,卡拉科鲁姆和喜马拉雅山脉的影响变大。在这些区域中,BC中的BC诱导表面上的净短波辐射的增加,每年平均值为1至3Wm≤2,导致局部升温在0.05和0.3°C之间。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号