...
首页> 外文期刊>APL Materials >MXene improves the stability and electrochemical performance of electropolymerized PEDOT films
【24h】

MXene improves the stability and electrochemical performance of electropolymerized PEDOT films

机译:MXENE提高了电聚合铅型薄膜的稳定性和电化学性能

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Poly(3,4-ethylenedioxythiophene) (PEDOT) doped with poly(styrene sulfonate) (PSS) is the most commonly used conducting polymer in organic bioelectronics. However, electrochemical capacitances exceeding the current state-of-the-art are required for enhanced transduction and stimulation of biological signals. The long-term stability of conducting polymer films during device operation and storage in aqueous environments remains a challenge for routine applications. In this work, we electrochemically synthesize a PEDOT composite comprising the water dispersible two-dimensional conducting material Tisub3/subCsub2/sub MXene. We find that incorporating MXene as a co-dopant along with PSS leads to PEDOT:PSS:MXene films with remarkably high volumetric capacitance (607.0 ± 85.3 F cmsup?3/sup) and stability (capacity retention = 78.44% ± 1.75% over 500 cycles), outperforming single dopant-comprising PEDOT films, i.e., PEDOT:PSS and PEDOT:MXene electropolymerized under the same conditions on identical surfaces. The stability of microfabricated PEDOT:PSS:MXene electrodes is evaluated under different conditions, i.e., when the films are exposed to sonication (~100% retention over 6 min), upon immersion in cell culture media for 14 days (? Z = 2.13%), as well as after continuous electrical stimulation. Furthermore, we demonstrate the use of a PEDOT:PSS:MXene electrode as an electrochemical sensor for sensitive detection of dopamine (DA). The sensor exhibited an enhanced electrocatalytic activity toward DA in a linear range from 1 μ M to 100 μ M validated in mixtures containing common interferents such as ascorbic acid and uric acid. PEDOT:PSS:MXene composite is easily formed on conductive substrates with various geometries and can serve as a high performance conducting interface for chronic biochemical sensing or stimulation applications.
机译:掺杂聚(苯乙烯磺酸盐)(PSS)的聚(3,4-亚乙二氧基噻吩)(PEDOT)是有机生物电体中最常用的导电聚合物。然而,需要超过当前现有最先进的电化学电容,以提高转导和生物信号的刺激。在设备操作期间导电聚合物膜的长期稳定性和储存在水环境中的储存仍然是常规应用的挑战。在这项工作中,我们将胶圈复合材料电化学合成了包含水分散的二维导电材料Ti 3 C 2 mxene。我们发现将MXENE作为共掺杂剂以及PSS与PSS导致PEDOT:PSS:MXENE薄膜具有显着高容量电容(607.0±85.3fcm 3 / sup>)和稳定性(容量保持= 78.44% ±1.75%超过500次循环),表现优于单掺杂剂的佩特膜,即PEDOT:PSS和PEDOT:MXENE在相同的表面上的相同条件下电聚合。微制成型PEDOT的稳定性:PSS:在不同条件下评价PSS:偏膜电极,即,当薄膜暴露于超声(〜100%在6分钟内)时,在细胞培养基中浸入细胞培养基14天(αZ = 2.13%时)以及连续电刺激之后。此外,我们证明了使用PEDOT:PSS:MXENE电极作为电化学传感器,用于敏感多巴胺(DA)。传感器在含有常见干扰剂如抗坏血酸和尿酸的常见干涉剂中验证的1μm至100μm的线性范围内的增强的电催化活性。 PEDOT:PSS:MXENE复合材料在具有各种几何形状的导电基板上容易形成,并且可以作为用于慢性生物化学感测或刺激应用的高性能导电界面。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号