首页> 外文期刊>Advanced Science >Stamping Fabrication of Flexible Planar Micro‐Supercapacitors Using Porous Graphene Inks
【24h】

Stamping Fabrication of Flexible Planar Micro‐Supercapacitors Using Porous Graphene Inks

机译:使用多孔石墨烯墨水冲压柔性平面微型超级超级电容器的制造

获取原文
           

摘要

High performance, flexibility, safety, and robust integration for micro‐supercapacitors (MSCs) are of immense interest for the urgent demand for miniaturized, smart energy‐storage devices. However, repetitive photolithography processes in the fabrication of on‐chip electronic components including various photoresists, masks, and toxic etchants are often not well‐suited for industrial production. Here, a cost‐effective stamping strategy is developed for scalable and rapid preparation of graphene‐based planar MSCs. Combining stamps with desired shapes and highly conductive graphene inks, flexible MSCs with controlled structures are prepared on arbitrary substrates without any metal current collectors, additives, and polymer binders. The interdigitated MSC exhibits high areal capacitance up to 21.7 mF cm?2 at a current of 0.5?mA and a high power density of 6?mW cm?2 at an energy density of 5 μWh cm?2. Moreover, the MSCs show outstanding cycling performance and remarkable flexibility over 10?000 charge–discharge cycles and 300 bending cycles. In addition, the capacitance and output voltage of the MSCs are easily adjustable through interconnection with well‐defined arrangements. The efficient, rapid manufacturing of the graphene‐based interdigital MSCs with outstanding flexibility, shape diversity, and high areal capacitance shows great potential in wearable and portable electronics.
机译:微型超级电容器(MSCs)的高性能,灵活性,安全性和鲁棒集成对小型化,智能能量存储设备的紧急需求具有巨大兴趣。然而,在包括各种光致抗蚀剂,掩模和有毒蚀刻剂的片上电子组件的制造中的重复光刻工艺通常不适合工业生产。在这里,开发了一种成本效益的冲压策略,用于基于石墨烯的平面MSC的可扩展和快速制备。将具有所需形状和高导电石墨烯油墨的标记组合,在没有任何金属集电器,添加剂和聚合物粘合剂的任意基材上制备具有受控结构的柔性MSC。互指的MSC在0.5Ωma的电流下具有高达21.7mF的高达21.7mF的高电容,高功率密度为5μWhcm≤2。此外,MSCs显示出优异的循环性能和超过10 000充放电循环和300个弯曲循环的显着灵活性。另外,MSC的电容和输出电压通过具有明确定义的布置的互连容易地调节。高效,快速地制造基于石墨烯的渐抗体MSC,具有出色的灵活性,形状多样性和高面积电容,在可穿戴和便携式电子设备中显示出很大的潜力。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号