...
首页> 外文期刊>Advanced Science >Microfluidic‐Architected Nanoarrays/Porous Core–Shell Fibers toward Robust Micro‐Energy‐Storage
【24h】

Microfluidic‐Architected Nanoarrays/Porous Core–Shell Fibers toward Robust Micro‐Energy‐Storage

机译:微流体 - 架构纳米阵列/多孔核 - 壳纤维朝向稳健的微能储存

获取原文

摘要

Methods enabling the controllable fabrication of orderly structural and active nanomaterials, along with high‐speed ionic pathways for charge migration and storage are highly fundamental in fiber‐shaped micro‐supercapacitors (MSCs). However, due to fiber‐electrodes with compact internal microstructure and less porosity, MSCs usually display a low energy density. Here, an innovative microfluidic strategy is proposed to design ordered porous and anisotropic core–shell fibers based on nickel oxide arrays/graphene nanomaterials. Owing to the homogeneous microchannels reaction, the graphene core maintains a uniformly anisotropic porous structure, and the nickel oxide shell keeps steadily vertically aligned nanosheets. The MSC presents an ultrahigh energy density (120.3 μWh cm?2) and large specific capacitance (605.9 mF cm?2). This higher performance originates from the microfluidic‐architected core–shell fiber with abundant ionic channels (plentiful micro‐/mesopores), large specific‐surface‐area (425.6 m2 g?1), higher electrical conductivity (176.6 S cm?1), and sufficient redox activity, facilitating ions with quicker diffusion and greater accumulation. Considering those outstanding properties, a wearable self‐powered system, converting and storing solar energy into electric energy, is designed to light up displays. This microfluidic strategy offers an effective way to design new structural materials, which will advance the development of next‐generation wearable/smart industries.
机译:方法使得有序结构和活性纳米材料的可控制造以及用于电荷迁移和储存的高速离子途径在纤维状微型超级电容器(MSCs)中具有高度基础。然而,由于具有紧凑的内部微观结构和孔隙率较少的纤维电极,MSC通常显示出低能量密度。这里,提出了一种基于氧化镍阵列/石墨烯纳米材料设计有序多孔和各向异性核心壳纤维的创新的微流体策略。由于均相微型通道反应,石墨烯核心保持均匀各向异性多孔结构,氧化镍壳保持稳定地对齐纳米晶片。 MSC呈现超高能量密度(120.3μWhcm→2)和大的特定电容(605.9mf×2)。这种较高的性能来自微流体群核 - 壳纤维,具有丰富的离子通道(丰富的微/索孔),大比表面积(425.6m2g≤1),电导率越高(176.6厘米?1),和足够的氧化还原活性,促进离子,随着较快的扩散和更高的积累。考虑到那些出色的房产,可穿戴的自动系统,将太阳能转换成电能,旨在亮起显示。这种微流体策略提供了一种设计新型结构材料的有效方法,这将推进下一代可穿戴/智能行业的发展。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号