首页> 外文期刊>Coatings >Molecular Dynamics Simulation of Dislocation Plasticity Mechanism of Nanoscale Ductile Materials in the Cold Gas Dynamic Spray Process
【24h】

Molecular Dynamics Simulation of Dislocation Plasticity Mechanism of Nanoscale Ductile Materials in the Cold Gas Dynamic Spray Process

机译:冷气动力喷涂过程中纳米级延流材料位错塑性机理的分子动力学模拟

获取原文
           

摘要

The dislocation plasticity of ductile materials in a dynamic process of cold gas spraying is a relatively new research topic. This paper offers an insight into the microstructure and dislocation mechanism of the coating using simulations of molecular dynamics (MD) because of the short MD simulation time scales. The nano-scale deposition of ductile materials onto a deformable copper substrate has been investigated in accordance with the material combination and impact velocities in the particle/substrate interfacial region. To examine the jetting mechanisms in a range of process parameters, rigorous analyses of the developments in pressure, temperature, dislocation plasticity, and microstructure are investigated. The pressure wave propagation’s critical function was identified by the molecular dynamics’ simulations in particle jet initiation, i.e., exterior material flow to the periphery of the particle and substrate interface. The initiation of jet occurs at the point of shock waves interact with the particle/substrate periphery and leads to localization of the metal softening in this region. In particular, our findings indicate that the initial particle velocity significantly influences the interactions between the material particles and the substrate surface, yielding various atomic strain and temperature distribution, processes of microstructure evolution, and the development of dislocation density in the particle/substrate interfacial zone for particles with various impact velocities. The dislocation density in the particle/substrate interface area is observed to grow much more quickly during the impact phase of Ni and Cu particles and the evolution of the microstructure for particles at varying initial impact velocities is very different.
机译:冷气喷涂动态过程中延展材料的脱位可塑性是一个相对较新的研究课题。本文利用分子动力学(MD)模拟由于短的MD模拟时间尺度来欣赏涂层的微观结构和位错机制。根据颗粒/衬底界面区域中的材料组合和冲击速度研究了延伸材料在可变形铜基板上的纳米级沉积。为了检查一系列工艺参数中的喷射机制,研究了压力,温度,脱臼可塑性和微观结构的严格分析。通过粒子射流引发中的分子动力学模拟鉴定了压力波传播的关键功能,即外部材料流到颗粒和衬底界面的周边。在冲击波的点处发生射流的启动与颗粒/基材周边相互作用,并导致该区域中金属软化的定位。特别地,我们的研究结果表明初始粒子速度显着影响材料颗粒和基材表面之间的相互作用,产生各种原子应变和温度分布,微观结构演化的过程,以及颗粒/衬底界面区域中的位错密度的发展对于具有各种冲击速度的颗粒。在Ni和Cu颗粒的冲击阶段期间观察到颗粒/衬底界面区域中的脱位密度快得多,并且在不同初始冲击速度下颗粒的微观结构的演化非常不同。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号