...
首页> 外文期刊>Coatings >Glancing Angle Deposition and Growth Mechanism of Inclined AlN Nanostructures Using Reactive Magnetron Sputtering
【24h】

Glancing Angle Deposition and Growth Mechanism of Inclined AlN Nanostructures Using Reactive Magnetron Sputtering

机译:反应磁控溅射倾斜ALN纳米结构的透明角沉积和生长机理

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Glancing angle deposition (GLAD) of AlN nanostructures was performed at room temperature by reactive magnetron sputtering in a mixed gas atmosphere of Ar and N2. The growth behavior of nanostructures shows strong dependence on the total working pressure and angle of incoming flux. In GLAD configuration, the morphology changed from coalesced, vertical nanocolumns with faceted terminations to highly inclined, fan-like, layered nanostructures (up to 38°); while column lengths decreased from around 1743 to 1068 nm with decreasing pressure from 10 to 1.5 mTorr, respectively. This indicates a change in the dominant growth mechanism from ambient flux dependent deposition to directional ballistic shadowing deposition with decreasing working pressures, which is associated with the change of energy and incident angle of incoming reactive species. These results were corroborated using simulation of metal transport (SiMTra) simulations performed at similar working pressures using Ar and N separately, which showed the average particle energy and average angle of incidence decreased while the total average scattering angle of the metal flux arriving at substrate increased with increasing working pressures. Observing the crystalline orientation of GLAD deposited wurtzite AlN nanocolumns using X-ray diffraction (XRD), pole-figure measurements revealed c-axis growth towards the direction of incoming flux and a transition from fiber-like to biaxial texture took place with increasing working pressures. Under normal deposition conditions, AlN layer morphology changed from {0001} to {101ˉ1} with increasing working pressure because of kinetic energy-driven growth.
机译:通过在Ar和N 2的混合气体气氛中通过反应磁控溅射在室温下在室温下进行渗透角沉积(高兴)。纳米结构的生长行为表现出对总工作压力和输入通量的角度的强依赖性。在很高兴的配置中,形态从合并的垂直纳米柱改变,具有刻面终端,以高度倾斜,风扇状,分层纳米结构(最高38°);柱长从大约1743〜1068nm的柱长分别降低10至1.5 mtorr。这表明从环境磁通依赖性沉积到方向性弹道沉积的主导生长机制的变化,与减小的工作压力降低,这与进入反应性物质的能量和入射角的变化相关。使用AR和N在类似的工作压力下进行的金属传输(SIMTRA)模拟的模拟进行了证实了这些结果,其显示了平均粒子能和平均入射角下降,而到达基板的金属磁通的总平均散射角增加随着工作压力的增加。使用X射线衍射(XRD)观察高兴沉积的紫吨矿石纳米柱的结晶取向,极值图测量显示了朝向进入通量方向的C轴生长,并且随着工作压力的增加而发生纤维状至双轴纹理的转变。在正常沉积条件下,由于动能驱动的生长,AlN层形态随着工作压力而增加的工作压力增加,从{0001}变为{101˚1}。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号