首页> 外文期刊>Biogeosciences Discussions >Consistent assimilation of MERIS FAPAR and atmospheric CO2 into a terrestrial vegetation model and interactive mission benefit analysis
【24h】

Consistent assimilation of MERIS FAPAR and atmospheric CO2 into a terrestrial vegetation model and interactive mission benefit analysis

机译:Meris Fapar和大气二氧化碳的一致同化融合到陆地植被模型和互动使命效益分析中

获取原文
获取外文期刊封面目录资料

摘要

The terrestrial biosphere is currently a strong sink for anthropogenic CO2 emissions. Through the radiative properties of CO2, the strength of this sink has a direct influence on the radiative budget of the global climate system. The accurate assessment of this sink and its evolution under a changing climate is, hence, paramount for any efficient management strategies of the terrestrial carbon sink to avoid dangerous climate change. Unfortunately, simulations of carbon and water fluxes with terrestrial biosphere models exhibit large uncertainties. A considerable fraction of this uncertainty reflects uncertainty in the parameter values of the process formulations within the models. This paper describes the systematic calibration of the process parameters of a terrestrial biosphere model against two observational data streams: remotely sensed FAPAR (fraction of absorbed photosynthetically active radiation) provided by the MERIS (ESA's Medium Resolution Imaging Spectrometer) sensor and in situ measurements of atmospheric CO2 provided by the GLOBALVIEW flask sampling network. We use the Carbon Cycle Data Assimilation System (CCDAS) to systematically calibrate some 70 parameters of the terrestrial BETHY (Biosphere Energy Transfer Hydrology) model. The simultaneous assimilation of all observations provides parameter estimates and uncertainty ranges that are consistent with the observational information. In a subsequent step these parameter uncertainties are propagated through the model to uncertainty ranges for predicted carbon fluxes. We demonstrate the consistent assimilation at global scale, where the global MERIS FAPAR product and atmospheric CO2 are used simultaneously. The assimilation improves the match to independent observations. We quantify how MERIS data improve the accuracy of the current and future (net and gross) carbon flux estimates (within and beyond the assimilation period). We further demonstrate the use of an interactive mission benefit analysis tool built around CCDAS to support the design of future space missions. We find that, for long-term averages, the benefit of FAPAR data is most pronounced for hydrological quantities, and moderate for quantities related to carbon fluxes from ecosystems. The benefit for hydrological quantities is highest for semi-arid tropical or sub-tropical regions. Length of mission or sensor resolution is of minor importance.
机译:陆地生物圈目前是一种强大的水槽,用于人为二氧化碳排放。通过CO2的辐射性能,该水槽的强度对全球气候系统的辐射预算直接影响。因此,在变化的气候下准确评估了这个水槽及其演变,因此对于陆地碳汇的任何有效的管理策略至关重要,以避免危险的气候变化。遗憾的是,碳水通量与陆地生物圈模型的模拟表现出大的不确定性。相当大的这种不确定性反映了模型内的过程制剂的参数值中的不确定性。本文介绍了对两个观测数据流的地面生物圈模型的工艺参数的系统校准:由Meris(ESA的中测量成像光谱仪)传感器和大气测量的远程感测到的FAPAR(吸收光合作用辐射的分数)。 CO2由GlobalView烧瓶采样网络提供。我们使用碳循环数据同化系统(CCDA)来系统地校准地面弯曲(生物圈能量转移水文)模型的大约70个参数。所有观察结果的同时同化提供了与观察信息一致的参数估计和不确定性范围。在随后的步骤中,这些参数不确定性通过模型传播到预测碳通量的不确定范围。我们展示了全球规模的一致同化,在那里全球使用FAPAR产品和大气二氧化碳同时使用。同化改善了与独立观察的匹配。我们量化了Meris数据如何提高当前和未来(净和总计)碳通量估计(在同化期内)的准确性。我们进一步展示了在CCDA周围建造的交互式使命福利分析工具的使用,以支持未来的空间任务的设计。我们发现,对于长期平均值来说,FAPAR数据的好处最为明显,对水文数量最为明显,与生态系统的碳通量有关的量。对于半干旱的热带或亚热带地区,水文量的益处最高。使命或传感器分辨率的长度很小。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号