...
首页> 外文期刊>Biogeosciences Discussions >Modeling anaerobic soil organic carbon decomposition in Arctic polygon tundra: insights into soil geochemical influences on carbon mineralization
【24h】

Modeling anaerobic soil organic carbon decomposition in Arctic polygon tundra: insights into soil geochemical influences on carbon mineralization

机译:北极多边形苔原型厌氧土壤有机碳分解:对土壤地球化学影响对碳矿化的见解

获取原文
           

摘要

Rapid warming of Arctic ecosystems exposes soil organic matter (SOM) to accelerated microbial decomposition, potentially leading to increased emissions of carbon dioxide (CO2) and methane (CH4) that have a positive feedback on global warming. Current estimates of the magnitude and form of carbon emissions from Earth system models include significant uncertainties, partially due to the oversimplified representation of geochemical constraints on microbial decomposition. Here, we coupled modeling principles developed in different disciplines, including a thermodynamically based microbial growth model for methanogenesis and iron reduction, a pool-based model to represent upstream carbon transformations, and a humic ion-binding model for dynamic pH simulation to build a more versatile carbon decomposition model framework that can be applied to soils under varying redox conditions. This new model framework was parameterized and validated using synthesized anaerobic incubation data from permafrost-affected soils along a gradient of fine-scale thermal and hydrological variabilities across Arctic polygonal tundra. The model accurately simulated anaerobic CO2 production and its temperature sensitivity using data on labile carbon pools and fermentation rates as model constraints. CH4 production is strongly influenced by water content, pH, methanogen biomass, and presence of competing electron acceptors, resulting in high variability in its temperature sensitivity. This work provides new insights into the interactions of SOM pools, temperature increase, soil geochemical feedbacks, and resulting CO2 and CH4 production. The proposed anaerobic carbon decomposition framework presented here builds a mechanistic link between soil geochemistry and carbon mineralization, making it applicable over a wide range of soils under different environmental settings.
机译:北极生态系统的快速变暖暴露土壤有机物(SOM)加速微生物分解,可能导致增加对全球变暖的正反馈的二氧化碳(CO 2)和甲烷(CH4)的发射。来自地球系统模型的碳排放量的当前估计包括显着的不确定性,部分原因是由于对微生物分解的地球化学约束的超薄表示。在这里,我们耦合在不同学科中开发的建模原理,包括用于甲基丙胺的热力学微生物生长模型,基于池的模型代表上游碳转化,以及用于动态pH模拟的腐殖质离子结合模型,以建立更多多功能碳分解模型框架,可应用于不同氧化还原条件下的土壤。该新模型框架是参数化和验证的,并验证了沿着北极多边形Tundra的微尺度热和水文变性的梯度的综合厌氧潜伏的土壤。该模型使用稳定碳池和发酵速率的数据准确地模拟了厌氧二氧化碳生产及其温度敏感性作为模型约束。 CH4生产受水含量,pH,甲烷化生物量和竞争电子受体的存在强烈影响,导致其温度敏感性的高度变化。这项工作提供了新的见解,进入Som池,温度增加,土壤化合理反馈和产生的CO2和CH4生产的相互作用。拟议的厌氧碳分解框架在此提出,土壤地球化学和碳矿化之间的机械连接,使其适用于不同环境环境下的各种土壤。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号