首页> 外文期刊>Biogeosciences Discussions >Better molecular preservation of organic matter in an oxic than in a sulfidic depositional environment: evidence from Thalassiphora pelagica (Dinoflagellata, Eocene) cysts
【24h】

Better molecular preservation of organic matter in an oxic than in a sulfidic depositional environment: evidence from Thalassiphora pelagica (Dinoflagellata, Eocene) cysts

机译:在亚磺酸沉积环境中更好地保​​存有机物中的有机物质:来自噻吩西氏菌(Dinoflagellata,eocene)囊肿的证据

获取原文
获取外文期刊封面目录资料

摘要

Anoxic sediments, as compared to oxic settings, encompass a much higher proportion of relatively labile and thus more reactive organic matter, naturally giving rise to structural changes of the organic molecules themselves, as well as cross-linking between them (e.g.,?through reactive sulfur species). Both processes transform the original biomolecules into geomolecules. For the oxic environment, these intermolecular and intramolecular transformations also operate, but cross-linking may be less important since the labile, reactive component is rapidly removed. As such, one may expect a structurally better preservation of the more refractory initial biomolecules in the oxic environment. To test this hypothesis, initially identical biomolecules need to be compared between different preservational environments. Here, we use the species-specific morphology of organic microfossils to assure a single initial biosynthetic product (the cysts of the fossil dinoflagellate species Thalassiphora pelagica) for comparison. We assess the macromolecular structures of cysts from the Eocene (~40Ma) sulfidic Rhine Graben and the oxic Kerguelen Plateau and compare them with each other and the structures of recent cysts. While between the sites the T. pelagica cysts are morphologically identical and show no signs of morphological modification, pyrolysis gas chromatography mass spectroscopy and micro Fourier transform infrared analyses show that their macromolecular characteristics are strongly different. Comparison with recent cysts shows that the cysts deposited in the sulfidic Rhine Graben show a strong additional contribution of long-chain aliphatic moieties and thus less diagenetic intermolecular cross-linking. The presence of organic sulfur identifies natural volcanization as one of the diagenetic processes. Furthermore, we observe a loss of bound oxygen and no trace of the original carbohydrate signature of the cyst wall biomacromolecule. The material deposited in the oxic sediments of the Kerguelen Plateau shows no traces of sulfurization. It shows a minor contribution of short carbon chains only and thus less diagenetic intermolecular cross-linking. Furthermore, a carbohydrate signature was still preserved evidencing a better molecular preservation of the initial biomacromolecule, supporting our initial hypothesis. This shows that excellent morphological preservation does not imply excellent chemical preservation. It also leads to the conclusion that the best preservation of molecular structure is not necessarily where most organic matter gets preserved, which, in turn, is important for understanding the nature and fate of sedimentary organic matter and its isotopic signature.
机译:与氧体化相比,缺氧沉积物包括更高的相对不稳定性和更具反应性有机物质的比例,自然地产生有机分子本身的结构变化,以及它们之间的交联(例如,α通过反应性硫种类)。这两个过程将原始生物分子转换为地质分子。对于氧环境,这些分子间和分子内转化也运行,但交联由于不稳定的反应性组分快速除去,因此交联可能不太重要。因此,人们可以期望在结构上更好地保存在氧环境中更耐火的初始生物分子。为了测试这个假设,最初需要在不同的保存环境之间比较相同的生物分子。在这里,我们使用有机微基质的特异性形态来确保单一的初始生物合成产物(化石丁胺酸盐物种Thalassiphora pelagica的囊肿)进行比较。我们评估来自eocene(〜40mA)硫化物莱茵河Graben和氧kergucen高原的囊肿的大分子结构,并将它们彼此进行比较和最近囊肿的结构。而T.Pelagica囊肿在形态上相同并且没有显示形态学修饰的迹象,热解气相色谱质谱和微傅里叶变换红外分析表明它们的大分子特性强烈不同。与最近的囊肿的比较表明,沉积在亚硫酸中莱茵河Graben中的囊肿显示出长链脂肪族部分的强烈额外贡献,从而较少的成岩分子间交联。有机硫的存在将天然活力识别为一种成岩过程之一。此外,我们观察到囊壁生物脉络的原始碳水化合物特征的结合氧气的丧失。沉积在Kerguegen高原的氧沉积物中的材料显示出没有硫化的痕迹。它显示了短碳链的少量贡献,从而较少的成岩分子间交联。此外,碳水化合物签名仍然保留了最佳分子保存初始生物致摩洛,支持我们的初步假设。这表明优异的形态保存并不意味着优异的化学保存。它还导致得出的最佳保存分子结构并不一定在大多数有机物质被保存的地方,这反过来又对了解沉积有机物的性质和命运及其同位素签名是重要的。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号