...
首页> 外文期刊>Biogeosciences Discussions >A 15-million-year-long record of phenotypic evolution in the heavily calcified coccolithophore Helicosphaera and its biogeochemical implications
【24h】

A 15-million-year-long record of phenotypic evolution in the heavily calcified coccolithophore Helicosphaera and its biogeochemical implications

机译:钙化Coccolthophore Helicosphaera的1.5亿岁的表型演进记录及其生物地球化学意义

获取原文

摘要

The biogeochemical impact of coccolithophores is defined not only by their overall abundance in the oceans but also by wide ranges in physiological traits such as cell size, degree of calcification and carbon production rates between different species. Species' sensitivity to environmental forcing has been suggested to relate to their cellular PIC:POC (particulate inorganic carbon:particulate organic carbon) ratio and other physiological constraints. Understanding both the short-term and longer-term adaptive strategies of different coccolithophore lineages, and how these in turn shape the biogeochemical role of the group, is therefore crucial for modeling the ongoing changes in the global carbon cycle. Here we present data on the phenotypic evolution of a large and heavily calcified genus Helicosphaera (order Zygodiscales) over the past 15?million years (Myr), at two deep-sea drill sites in the tropical Indian Ocean and temperate South Atlantic. The modern species Helicosphaera carteri, which displays ecophysiological adaptations in modern strains, was used to benchmark the use of its coccolith morphology as a physiological proxy in the fossil record. Our results show that, on the single-genotype level, coccolith morphology has no correlation with growth rates, cell size or PIC and POC production rates in H. carteri. However, significant correlations of coccolith morphometric parameters with cell size and physiological rates do emerge once multiple genotypes or closely related lineages are pooled together. Using this insight, we interpret the phenotypic evolution in Helicosphaera as a global, resource-limitation-driven selection for smaller cells, which appears to be a common adaptive trait among different coccolithophore lineages, from the warm and high-CO2 world of the middle Miocene to the cooler and low-CO2 conditions of the Pleistocene. However, despite a significant decrease in mean coccolith size and cell size, Helicosphaera kept a relatively stable PIC:POC ratio (as inferred from the coccolith aspect ratio) and thus highly conservative biogeochemical output on the cellular level. We argue that this supports its status as an obligate calcifier, like other large and heavily calcified genera such as Calcidiscus and Coccolithus, and that other adaptive strategies, beyond size adaptation, must support the persistent, albeit less abundant, occurrence of these taxa. This is in stark contrast with the ancestral lineage of Emiliania and Gephyrocapsa, which not only decreased in mean size but also displayed much higher phenotypic plasticity in their degree of calcification while becoming globally more dominant in plankton communities.
机译:Coccolithophores的生物地球化学影响不仅通过它们在海洋中的总体丰富而且宽范围,诸如细胞大小,钙化程度和不同物种之间的碳生产率的范围。已经提出了物种对环境迫使的敏感性与其细胞照片:PoC(颗粒状无机碳:颗粒状有机碳)比和其他生理学约束。了解不同Coccolthophore谱系的短期和长期适应性策略,以及这些换档本集团的生物地球化学作用如何对模拟全球碳循环的持续变化是至关重要的至关重要。在这里,我们在过去的15亿年(MYR),在热带印度洋和温带南大西洋的两个深海钻头,呈现出大型和重钙的螺旋状症(Zygodiscales)的表型进化的数据。现代物种螺旋氨基鞘卡特利在现代菌株中展示了生态学适应,用于基准,将其Coccolith形态作为化石记录中的生理学代理进行基准。我们的结果表明,在单一基因型水平上,Coccolith形态与H. Carteri的增长率,细胞大小或PIC和PoC生产率没有相关性。然而,Coccolith与细胞大小和生理速率的显着相关性与细胞尺寸和生理速率进行了一旦将多种基因型或密切相关的谱系一起汇集在一起​​。使用这种洞察力,我们将螺旋磷的表型演变作为全球性的,资源限制驱动的较小细胞的选择,这似乎是不同的Coccolthophore谱系中的常见适应性性,来自中间新生的温暖和高二氧化碳世界到更加熟石的冷却器和低二氧化碳条件。然而,尽管平均Coccolith尺寸和细胞尺寸显着降低,但螺旋膦保持相对稳定的照片:PoC率(从Coccolith纵横比推断),因此高度保守的细胞水平上的生物地质化学输出。我们认为,这支持其作为钙钙化有股票化的钙化剂的地位,如钙钙和Coccolithus等其他自适应策略,超越尺寸适应,必须支持持久性,尽管较少,但这些分类群体不那么丰富。这与Emiliania和Gephyrocapsa的祖先血统血迹相比,这不仅在平均规模中减少,而且在钙化程度上表现出更高的表型可塑性,同时在浮游生物社区变得更大的统治。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号