首页> 外文期刊>Biogeosciences Discussions >Imaging tropical peatlands in Indonesia using ground-penetrating radar (GPR) and electrical resistivity imaging (ERI): implications for carbon stock estimates and peat soil characterization
【24h】

Imaging tropical peatlands in Indonesia using ground-penetrating radar (GPR) and electrical resistivity imaging (ERI): implications for carbon stock estimates and peat soil characterization

机译:在印度尼西亚进行了成像热带泥炭地使用地面穿透雷达(GPR)和电阻率成像(ERI):对碳储备估算和泥炭土壤表征的影响

获取原文
       

摘要

Current estimates of carbon (C) storage in peatland systems worldwide indicate that tropical peatlands comprise about 15% of the global peat carbon pool. Such estimates are uncertain due to data gaps regarding organic peat soil thickness, volume and C content. We combined a set of indirect geophysical methods (ground-penetrating radar, GPR, and electrical resistivity imaging, ERI) with direct observations using core sampling and C analysis to determine how geophysical imaging may enhance traditional coring methods for estimating peat thickness and C storage in a tropical peatland system in West Kalimantan, Indonesia. Both GPR and ERI methods demonstrated their capability to estimate peat thickness in tropical peat soils at a spatial resolution not feasible with traditional coring methods. GPR is able to capture peat thickness variability at centimeter-scale vertical resolution, although peat thickness determination was difficult for peat columns exceeding 5 m in the areas studied, due to signal attenuation associated with thick clay-rich transitional horizons at the peat–mineral soil interface. ERI methods were more successful for imaging deeper peatlands with thick organomineral layers between peat and underlying mineral soil. Results obtained using GPR methods indicate less than 3% variation in peat thickness (when compared to coring methods) over low peat–mineral soil interface gradients (i.e., below 0.02°) and show substantial impacts in C storage estimates (i.e., up to 37 MgC ha?1 even for transects showing a difference between GPR and coring estimates of 0.07 m in average peat thickness). The geophysical data also provide information on peat matrix attributes such as thickness of organomineral horizons between peat and underlying substrate, the presence of buried wood, buttressed trees or tip-up pools and soil type. The use of GPR and ERI methods to image peat profiles at high resolution can be used to further constrain quantification of peat C pools and inform responsible peatland management in Indonesia and elsewhere in the tropics.
机译:全球泥炭地系统中的碳(C)储存的目前估计表明,热带泥炭地包括约15%的全球泥炭碳池。由于有机泥炭土厚度,体积和C含量的数据差距,这种估计是不确定的。我们组合了一组间接地球物理方法(地面穿透雷达,GPR和电阻率成像,ERI),使用核心采样和C分析来确定地球物理成像如何增强传统芯片方法,用于估算泥炭厚度和C存储器在印度尼西亚西加里曼丹的热带泥炭地系统。 GPR和ERI方法都证明了它们在空间分辨率下估计热带泥炭泥土中的泥炭厚度不可行,不可行。 GPR能够在厘米级垂直分辨率下捕获泥炭厚度可变性,尽管在所研究的区域中超过5米的泥炭粒度难以难以进行泥炭厚度测定,因此由于泥炭矿物土壤的厚厚的粘土过渡视野相关,但泥炭柱难以超过5米的泥炭柱界面。 ERI方法更成功地对泥炭和下面的矿物土壤之间的厚型泥炭块成像。使用GPR方法获得的结果表明泥炭厚度的少于3%(与芯片方法相比)在低泥炭矿物土界面梯度(即低于0.02°)并显示C存储估计中的显着影响(即最多37 MGC HA?1即使对于横断面而言,显示GPR和芯片估计的差异为0.07μm的平均泥炭厚度)。地球物理数据还提供有关泥炭基质属性的信息,例如泥炭和底层基材之间的有机型视野的厚度,埋藏木材,支撑树木或倾斜池和土壤类型的存在。在高分辨率下,使用GPR和ERI方法以高分辨率图像泥炭型材可用于进一步约束泥炭C池的量化,并在印度尼西亚和热带地区的其他地方通知负责的泥炭地管理。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号