首页> 外文期刊>Biogeosciences Discussions >Characterizing the multi–scale spatial structure of remotely sensed evapotranspiration with information theory
【24h】

Characterizing the multi–scale spatial structure of remotely sensed evapotranspiration with information theory

机译:用信息理论表征远程感测蒸发的多尺度空间结构

获取原文
       

摘要

A more thorough understanding of the multi-scale spatial structure of land surface heterogeneity will enhance understanding of the relationships and feedbacks between land surface conditions, mass and energy exchanges between the surface and the atmosphere, and regional meteorological and climatological conditions. The objectives of this study were to (1) quantify which spatial scales are dominant in determining the evapotranspiration flux between the surface and the atmosphere and (2) to quantify how different spatial scales of atmospheric and surface processes interact for different stages of the phenological cycle. We used the ALEXI/DisALEXI model for three days (DOY 181, 229 and 245) in 2002 over the Ft. Peck Ameriflux site to estimate the latent heat flux from Landsat, MODIS and GOES satellites. We then applied a multiresolution information theory methodology to quantify these interactions across different spatial scales and compared the dynamics across the different sensors and different periods. We note several important results: (1) spatial scaling characteristics vary with day, but are usually consistent for a given sensor, but (2) different sensors give different scalings, and (3) the different sensors exhibit different scaling relationships with driving variables such as fractional vegetation and near surface soil moisture. In addition, we note that while the dominant length scale of the vegetation index remains relatively constant across the dates, the contribution of the vegetation index to the derived latent heat flux varies with time. We also note that length scales determined from MODIS are consistently larger than those determined from Landsat, even at scales that should be detectable by MODIS. This may imply an inability of the MODIS sensor to accurately determine the fine scale spatial structure of the land surface. These results aid in identifying the dominant cross-scale nature of local to regional biosphere-atmosphere interactions.
机译:地表异质性的多尺度空间结构更透彻的理解将增进了解陆面状况,质量和能量交换的地表和大气,以及区域气象和气候条件之间的关系和反馈的。本研究的目的是(1)量化,其空间尺度是显性在确定表面与大气和(2)之间的蒸散通量量化大气和表面处理的如何不同的空间尺度的物候周期的不同阶段相互作用。我们用了三天的阿列克谢/ DisALEXI模型(DOY 181,229和245)于2002年在英尺。佩克美洲通量站点来估计从陆地卫星,MODIS潜热通量和GOES卫星。然后,我们应用了多分辨率信息论方法来量化在不同的空间尺度,这些相互作用和比较在不同的传感器和不同时期的动态。我们注意到几个重要的结果:(1)空间缩放特性与天有所不同,但通常是一致的对于给定的传感器,但(2)不同的传感器产生不同的定标,以及(3)不同的传感器表现出与这样的驱动变量不同的缩放关系如分数植被和表层土壤湿度。此外,我们注意到,虽然植被指数的主要尺度在跨越日期相对恒定,植被指数衍生潜热通量的贡献随时间变化。我们也注意到从MODIS确定长度比例持续高于那些将Landsat确定较大,即使在规模应该由MODIS被检测到。这可能意味着所述MODIS传感器的不能准确地确定大地表面的精细尺度空间结构。这些结果有助于确定当地的主导跨尺度自然区域生物圈 - 大气相互作用。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号