...
首页> 外文期刊>Biotechnology for Biofuels >Metabolic engineering of the cellulolytic thermophilic fungus Myceliophthora thermophila to produce ethanol from cellobiose
【24h】

Metabolic engineering of the cellulolytic thermophilic fungus Myceliophthora thermophila to produce ethanol from cellobiose

机译:纤维素醇嗜热嗜热嗜热菌的代谢工程肌电藻霉菌,从纤维二糖生产乙醇

获取原文

摘要

Cellulosic biomass is a promising resource for bioethanol production. However, various sugars in plant biomass hydrolysates including cellodextrins, cellobiose, glucose, xylose, and arabinose, are poorly fermented by microbes. The commonly used ethanol-producing microbe Saccharomyces cerevisiae can usually only utilize glucose, although metabolically engineered strains that utilize xylose have been developed. Direct fermentation of cellobiose could avoid glucose repression during biomass fermentation, but applications of an engineered cellobiose-utilizing S. cerevisiae are still limited because of its long lag phase. Bioethanol production from biomass-derived sugars by a cellulolytic filamentous fungus would have many advantages for the biorefinery industry. We selected Myceliophthora thermophila, a cellulolytic thermophilic filamentous fungus for metabolic engineering to produce ethanol from glucose and cellobiose. Ethanol production was increased by 57% from glucose but not cellobiose after introduction of ScADH1 into the wild-type (WT) strain. Further overexpression of a glucose transporter GLT-1 or the cellodextrin transport system (CDT-1/CDT-2) from N. crassa increased ethanol production by 131% from glucose or by 200% from cellobiose, respectively. Transcriptomic analysis of the engineered cellobiose-utilizing strain and WT when grown on cellobiose showed that genes involved in oxidation–reduction reactions and the stress response were downregulated, whereas those involved in protein biosynthesis were upregulated in this effective ethanol production strain. Turning down the expression of pyc gene results the final engineered strain with the ethanol production was further increased by 23%, reaching up to 11.3?g/L on cellobiose. This is the first attempt to engineer the cellulolytic fungus M. thermophila to produce bioethanol from biomass-derived sugars such as glucose and cellobiose. The ethanol production can be improved about 4 times up to 11 grams per liter on cellobiose after a couple of genetic engineering. These results show that M. thermophila is a promising platform for bioethanol production from cellulosic materials in the future.
机译:纤维素生物量是生物乙醇生产的有希望的资源。然而,在植物生物质水解产物中的各种糖,包括蜂窝霉素,纤维二糖,葡萄糖,木糖和阿拉伯糖,通过微生物发酵不良。常用的乙醇产生的微生物酿酒酵母酿酒酵母通常仅利用葡萄糖,尽管已经开发了使用木糖的代谢工程菌株。直接发酵的纤维生物糖可以在生物质发酵过程中避免葡萄糖抑制,但是使用工程化的Cellobiose-Cerevisiae的应用仍然有限,因为其长期滞后阶段。通过纤维素分解丝状真菌从生物质衍生的糖中产生生物乙醇的生产将对生物颗粒工业产生许多优势。我们选择了Myceliophthora Hevorcophila,一种用于代谢工程的纤维素嗜热丝状真菌,从葡萄糖和纤维糖产生乙醇。在将Scadh1引入野生型(WT)菌株后,乙醇产量从葡萄糖产生57%而不是纤维生物糖。来自N克斯坦的葡萄糖转运蛋白GLT-1或纤维素转运系统(CDT-1 / CDT-2)的进一步过表达分别从N克斯的乙醇增加131%的葡萄糖或从纤维二糖的200%增加。纤维二糖上生长时的工程化利用纤维二糖 - 应变和WT的转录分析显示参与氧化还原反应和应激反应的基因表达下调,而参与蛋白质生物合成的那些在此有效的乙醇生产菌株中上调。拒绝愈合Pyc基因的表达结果与乙醇产量的最终工程化菌株进一步增加了23%,达到纤维二糖高达11.3μl≤1.3.3μl。这是首次尝试工程师嗜热菌,从葡萄糖和纤维糖等生物质衍生的糖生产生物乙醇。在几次基因工程之后,乙醇产量可以在纤维生成中提高约11克,每升高达11克。这些结果表明,M.Vishophila是未来纤维素材料生物乙醇生产的有希望的平台。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号