首页> 外文期刊>Biotechnology for Biofuels >Restricting lignin and enhancing sugar deposition in secondary cell walls enhances monomeric sugar release after low temperature ionic liquid pretreatment
【24h】

Restricting lignin and enhancing sugar deposition in secondary cell walls enhances monomeric sugar release after low temperature ionic liquid pretreatment

机译:限制木质素和增强次级细胞壁中的糖沉积增强了低温离子液体预处理后的单体糖释放

获取原文
           

摘要

Background Lignocellulosic biomass has the potential to be a major source of renewable sugar for biofuel production. Before enzymatic hydrolysis, biomass must first undergo a pretreatment step in order to be more susceptible to saccharification and generate high yields of fermentable sugars. Lignin, a complex, interlinked, phenolic polymer, associates with secondary cell wall polysaccharides, rendering them less accessible to enzymatic hydrolysis. Herein, we describe the analysis of engineered Arabidopsis lines where lignin biosynthesis was repressed in fiber tissues but retained in the vessels, and polysaccharide deposition was enhanced in fiber cells with little to no apparent negative impact on growth phenotype. Results Engineered Arabidopsis plants were treated with the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate 1-ethyl-3-methylimidazolium acetate ([C 2 C 1 im][OAc]) at 10 % wt biomass loading at either 70 °C for 5 h or 140 °C for 3 h. After pretreatment at 140 °C and subsequent saccharification, the relative peak sugar recovery of ~26.7 g sugar per 100 g biomass was not statistically different for the wild type than the peak recovery of ~25.8 g sugar per 100 g biomass for the engineered plants (84 versus 86 % glucose from the starting biomass). Reducing the pretreatment temperature to 70 °C for 5 h resulted in a significant reduction in the peak sugar recovery obtained from the wild type to 16.2 g sugar per 100 g biomass, whereas the engineered lines with reduced lignin content exhibit a higher peak sugar recovery of 27.3 g sugar per 100 g biomass and 79 % glucose recoveries. Conclusions The engineered Arabidopsis lines generate high sugar yields after pretreatment at 70 °C for 5 h and subsequent saccharification, while the wild type exhibits a reduced sugar yield relative to those obtained after pretreatment at 140 °C. Our results demonstrate that employing cell wall engineering efforts to decrease the recalcitrance of lignocellulosic biomass has the potential to drastically reduce the energy required for effective pretreatment.
机译:背景,木质纤维素生物量有可能成为生物燃料生产可再生糖的主要来源。在酶水解之前,生物质必须首先经历预处理步骤,以便更容易糖化,并产生高产率的可发酵糖。木质素,复合物,互连,酚醛聚合物,与二次细胞壁多糖相关联,使它们不易获得酶水解。在此,我们描述了对纤维组织中抑制木质素生物合成的工程拟南芥系的分析,但在血管中保留,并且在纤维细胞中增强了多糖沉积,几乎没有对生长表型没有明显的负面影响。结果用离子液体(IL)1-乙基-3-甲基咪唑鎓乙酸乙酯1-乙基-3-甲基咪唑鎓([C 2 C 1 IM] [OAC])处理工程拟南芥植物,在70%的生物量负载下℃或140℃3小时。在140℃和随后的糖化后进行预处理后,每100克生物质的相对峰糖回收〜26.7g糖对于野生型而不是每100克生物质的峰值回收态度差异,对于工程植物( 84对起始生物质的86%葡萄糖)。将预处理温度降低至70℃5小时导致每100g生物量的野生型至16.2g糖获得的峰糖回收率显着降低,而具有降低的木质素含量的工程线具有更高的糖糖恢复每100克生物量27.3g糖和79%葡萄糖回收率。结论工程拟南芥系在70℃下进行预处理5小时后产生高糖产量,随后的糖化,而野生型相对于在140℃下预处理后获得的那些,野生型表现出降低的糖产率。我们的结果表明,采用细胞壁工程努力降低木质纤维素生物质的核批量,有可能大大降低有效预处理所需的能量。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号