...
首页> 外文期刊>Scientific reports. >Effect of Low-Temperature Al 2 O 3 ALD Coating on Ni-Rich Layered Oxide Composite Cathode on the Long-Term Cycling Performance of Lithium-Ion Batteries
【24h】

Effect of Low-Temperature Al 2 O 3 ALD Coating on Ni-Rich Layered Oxide Composite Cathode on the Long-Term Cycling Performance of Lithium-Ion Batteries

机译:低温Al 2 O 3 Ald涂层对锂离子电池长期循环性能的影响对富含Ni的层状氧化物复合阴极的影响

获取原文

摘要

Conformal coating of nm-thick Al2O3 layers on electrode material is an effective strategy for improving the longevity of rechargeable batteries. However, solid understanding of how and why surface coatings work the way they do has yet to be established. In this article, we report on low-temperature atomic layer deposition (ALD) of Al2O3 on practical, ready-to-use composite cathodes of NCM622 (60% Ni), a technologically important material for lithium-ion battery applications. Capacity retention and performance of Al2O3-coated cathodes (≤10 ALD growth cycles) are significantly improved over uncoated NCM622 reference cathodes, even under moderate cycling conditions. Notably, the Al2O3 surface shell is preserved after cycling in full-cell configuration for 1400 cycles as revealed by advanced electron microscopy and elemental mapping. While there are no significant differences in terms of bulk lattice structure and transition-metal leaching among the coated and uncoated NCM622 materials, the surface of the latter is found to be corroded to a much greater extent. In particular, detachment of active material from the secondary particles and side reactions with the electrolyte appear to lower the electrochemical activity, thereby leading to accelerated capacity degradation.
机译:在电极材料上的NM厚Al2O3层的共形涂层是改善可充电电池的寿命的有效策略。但是,牢固了解如何以及为何尚未建立的表面涂层工作。在本文中,我们在NCM622(60%NI)的实用,即用的复合阴极上的低温原子层沉积(ALD)的NCM622(60%NI),是锂离子电池应用的技术重要的材料。即使在中等循环条件下,在未涂覆的NCM622参考阴极上显着改善Al2O3涂覆阴极(≤10Ald生长循环)的容量保持和性能。值得注意的是,通过先进的电子显微镜和元素映射透露,在全细胞构造中循环后保存Al 2 O 3表面壳。虽然在涂覆和未涂覆的NCM622材料中的批量晶格结构和过渡金属浸出方面没有显着差异,但是后者的表面被发现在更大程度上被腐蚀。特别地,与电解质的二次颗粒和副反应的活性材料的分离似乎降低了电化学活性,从而导致加速的能力降解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号