...
首页> 外文期刊>Scientific reports. >High Shear Stresses under Exercise Condition Destroy Circulating Tumor Cells in a Microfluidic System
【24h】

High Shear Stresses under Exercise Condition Destroy Circulating Tumor Cells in a Microfluidic System

机译:运动条件下的高剪切应力破坏了微流体系统中的循环肿瘤细胞

获取原文
           

摘要

Circulating tumor cells (CTCs) are the primary targets of cancer treatment as they cause distal metastasis. However, how CTCs response to exercise-induced high shear stress is largely unknown. To study the effects of hemodynamic microenvironment on CTCs, we designed a microfluidic circulatory system that produces exercise relevant shear stresses. We explore the effects of shear stresses on breast cancer cells with different metastatic abilities, cancer cells of ovarian, lung and leukemic origin. Three major findings were obtained. 1) High shear stress of 60?dynes/cm2 achievable during intensive exercise killed more CTCs than low shear stress of 15?dynes/cm2 present in human arteries at the resting state. 2) High shear stress caused necrosis in over 90% of CTCs within the first 4?h of circulation. More importantly, the CTCs that survived the first 4?h-circulation, underwent apoptosis during 16–24?h of post-circulation incubation. 3) Prolonged high shear stress treatment effectively reduced the viability of highly metastatic and drug resistant breast cancer cells. As high shear stress had much less damaging effects on leukemic cells mimicking the white blood cells, we propose that intensive exercise may be a good strategy for generating high shear stress that can destroy CTCs and prevent cancer metastasis.
机译:循环肿瘤细胞(CTC)是癌症治疗的主要靶标,因为它们导致远端转移。然而,CTCS如何响应运动诱导的高剪切应力在很大程度上是未知的。为研究血流动力学微环境对CTC的影响,我们设计了一种微流体循环系统,产生了锻炼相关的剪切应力。我们探讨了剪切应力对具有不同转移能力的乳腺癌细胞,卵巢癌细胞癌细胞,卵巢肿瘤和白血病来源的影响。获得了三个主要研究结果。 1)60℃的高剪切应力在密集运动中可实现的50℃/ cm2杀死比休息状态的人类动脉中存在的15℃的低剪切应力更多的CTC。 2)高剪切应力在循环的前4°H内超过90%的CTC引起的坏死。更重要的是,在循环后孵育的16-24℃下,在前4次循环中幸存下来的CTCS在循环孵育期间接受细胞凋亡。 3)延长高剪切应力处理有效降低了高转移性和耐药性乳腺癌细胞的活力。由于高剪切应力对模仿白细胞的白血病细胞具有更大的破坏性影响,我们提出了强化运动可能是产生能够破坏CTC的高剪切应激并防止癌转移的良好策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号