...
首页> 外文期刊>RSC Advances >Downstream processing of microalgal feedstock for lipid and carbohydrate in a biorefinery concept: a holistic approach for biofuel applications
【24h】

Downstream processing of microalgal feedstock for lipid and carbohydrate in a biorefinery concept: a holistic approach for biofuel applications

机译:生物遗料概念中脂质和碳水化合物微藻原料的下游加工:生物燃料应用的整体方法

获取原文
           

摘要

An integrated microalgal feedstock-based biorefinery approach towards improving overall performance of downstream processing of algal biomass to produce multiple products is necessary to make a good value proposition. The present study thus focuses on the development of an integrated downstream processing strategy for the concomitant extraction of lipid and carbohydrate as feedstocks for potential biofuel applications. A harvesting efficiency of up to 90.6 ± 2.8% and 98.7 ± 2.1% was accomplished for Chlorococcum cells by employing minimal FeCl _(3) in first the 30 min and 150 min, respectively, as opposed to 55.52 ± 2.2% in 30 min using only its self-flocculation ability. Various physical and chemical pretreatment methods were attempted to maximize the recovery of sugars and lipids, separately and simultaneously. Microalgal lipid was efficiently recovered using cell disruption with bead-beating and chloroform–methanol (2?:?1, v/v) as the extraction solvent. The microalgal carbohydrate recovery and conversion into free fermentable sugars was found to be greater in the case of acid hydrolysis as compared to alkaline hydrolysis. The microalgal biomass, when pretreated separately, gave a total sugar yield of 89.6 ± 3.1% and a total lipid yield of 96.2 ± 2.9%. Therefore, to improve the performance of the process, simultaneous extraction of carbohydrate and lipid was carried out using bead-beating followed by acid treatment. The recoveries of fermentable sugars from the supernatant and that of lipid from pellets were most efficient, with respective yields of nearly 86.5 ± 2.6% and 74.1 ± 1.8%, without any downtime. The extracted lipid was then converted into fatty acid methyl esters (FAME) as a biodiesel product using the standardized acid catalyzed transesterification reaction, resulting in FAME conversion of 94.7 ± 2.5%. The fermentability of the total sugars to bioethanol using S. cerevisiae was studied and a maximum ethanol concentration of 4.1 ± 0.2 g L ~(?1) was obtained. Thus, the study holistically addresses some technological challenges in the downstream processing of microalgal biomass for the efficient recovery of lipid and carbohydrate for the production of biofuels in a biorefinery model for sustainable future development.
机译:基于综合的微藻原料的生物遗弃方法旨在提高藻类生物质下游加工的整体性能,以产生良好的价值主张。因此,本研究侧重于开发用于伴随脂质和碳水化合物作为潜在生物燃料应用的原料的综合下游加工策略。通过在前30分钟和150分钟中使用最小的FECL _(3),而不是在30分钟内使用最小的FECL _(3),为氯腔细胞完成高达90.6±2.8%和98.7±2.1%的收获效率。只有其自絮凝能力。尝试分别和同时最大化各种物理和化学预处理方法来最大化糖和脂质的恢复。使用细胞破坏用珠子跳动和氯仿 - 甲醇(2?:1,v / v)有效地回收微藻脂质作为萃取溶剂。与碱性水解相比,发现微藻碳水化合物回收和转化为游离可发酵的糖,在酸水解的情况下更大。单独预处理时微藻生物量,总含糖产率为89.6±3.1%,总脂质产率为96.2±2.9%。因此,为了改善该方法的性能,使用珠子搏动进行碳水化合物和脂质的同时提取,然后进行酸处理。来自上清液的可发酵糖的回收率和颗粒中的脂质的回收率最有效,其产率近86.5±2.6%和74.1±1.8%,没有任何停机时间。然后使用标准化的酸催化的酯交换反应将提取的脂质转化为脂肪酸甲酯(MAME)作为生物柴油产品,导致MAME转化为94.7±2.5%。研究了总糖对生物乙醇使用S.酿酒酵母的发酵性,得到了最大乙醇浓度为4.1±0.2g L〜(α1)。因此,该研究全能地解决了微藻生物质的下游加工中的一些技术挑战,以获得脂质和碳水化合物的有效恢复,用于生产可持续未来发展的生物源模型中生物燃料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号