首页> 外文期刊>MATEC Web of Conferences >Application of Numerical Simulation on the Manufacturing Process Qualification of Nuclear Power Plant Steam Generator Tube-sheet
【24h】

Application of Numerical Simulation on the Manufacturing Process Qualification of Nuclear Power Plant Steam Generator Tube-sheet

机译:数值模拟在核电站蒸汽发生器管板制造工艺资格中的应用

获取原文

摘要

Nuclear power plant key parts-steam generator (SG) tube sheet forging operate in harsh environment, so it has high requirements for internal quality. According to RCC-M specification requirements (take CPR1000 reactor type for example), the manufacturer should carry out workshop qualification and part process qualification before delivery product manufacturing. It is commonly used that centre compaction process and conical plate upsetting process regard as two kinds of large forging upsetting ways. The numerical analogue simulation has been carried out on nuclear power large tube sheet forgings using France Forge simulation software. The results show that: when the same pressure size, 3-direction compressive stress in the core of the billet always exist in the process of upsetting using centre pressing process, and the strain create in the central of the billet, but stagnant zone exist on the bottom and end plane; tensile stress in the core of the billet always exist in the process of upsetting using conical plate upsetting process, it will force the billet that contact with conical plate to deform, so eliminate stagnant zone, but effective deformation don’t produce in the central of the billet. The conical plate continue press for conical plate upsetting process, tensile stress in the core of the billet disappear, and then gradually change into pressure stress, then tensile stress is generated at the bottom, finally tensile stress disappear and 3-direction compressive stress exist in the core of the billet.
机译:核电站关键部件 - 蒸汽发生器(SG)管板锻造在恶劣的环境中运行,因此它具有高要求内部质量。根据RCC-M规格要求(例如,采用CPR1000反应堆类型),制造商应在交付产品制造之前进行研讨会资格和部件流程资格。它通常使用该中心压实过程和锥形板镦粗工艺,以两种大型锻造镦锻方式。使用法国Forge仿真软件在核电大管板锻件上进行了数值模拟模拟。结果表明:当相同的压力尺寸时,坯料芯中的3方向压缩应力总是存在于使用中心按压过程的镦粗的过程中,并且应变在坯料的中心形成,但存在停滞区域底部和端架;钢坯芯中的拉伸应力总是存在在使用锥形板镦粗工艺镦粗的过程中,它将迫使坯料与锥形板接触以变形,因此消除停滞区域,但有效变形不会产生中央的变形钢坯。锥形板继续压制锥形板镦粗工艺,坯料的轴芯中的拉伸应力消失,然后逐渐变为压力应力,然后在底部产生拉伸应力,最后拉伸应力消失,存在三方向压缩应力钢坯的核心。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号