首页> 外文期刊>Atmospheric chemistry and physics >Strong day-to-day variability of the Asian Tropopause Aerosol Layer (ATAL) in August 2016 at the Himalayan foothills
【24h】

Strong day-to-day variability of the Asian Tropopause Aerosol Layer (ATAL) in August 2016 at the Himalayan foothills

机译:2016年8月在喜马拉雅山山麓的亚洲对卓博汽油层(Atal)的强烈日常变异性

获取原文
           

摘要

The South Asian summer monsoon is associated with a large-scale anticyclonic circulation in the upper troposphere and lower stratosphere (UTLS), which confines the air mass inside. During boreal summer, the confinement of this air mass leads to an accumulation of aerosol between about 13 and 18 km (360 and 440 K potential temperature); this accumulation of aerosol constitutes the Asian Tropopause Aerosol Layer (ATAL). We present balloon-borne aerosol backscatter measurements of the ATAL performed by the Compact Optical Backscatter Aerosol Detector (COBALD) instrument in Nainital in northern India in August 2016, and compare these with COBALD measurements in the post-monsoon time in November 2016. The measurements demonstrate a strong variability of the ATAL's altitude, vertical extent, aerosol backscatter intensity and cirrus cloud occurrence frequency. Such a variability cannot be deduced from climatological means of the ATAL as they are derived from satellite measurements. To explain this observed variability we performed a Lagrangian back-trajectory analysis using the Chemical Lagrangian Model of the Stratosphere (CLaMS). We identify the transport pathways as well as the source regions of air parcels contributing to the ATAL over Nainital in August 2016. Our analysis reveals a variety of factors contributing to the observed day-to-day variability of the ATAL: continental convection, tropical cyclones (maritime convection), dynamics of the anticyclone and stratospheric intrusions. Thus, the air in the ATAL is a mixture of air masses coming from different atmospheric altitude layers. In addition, contributions from the model boundary layer originate in different geographic source regions. The location of the strongest updraft along the backward trajectories reveals a cluster of strong upward transport at the southern edge of the Himalayan foothills. From the top of the convective outflow level (about 13 km; 360 K) the air parcels ascend slowly to ATAL altitudes within a large-scale upward spiral driven by the diabatic heating in the anticyclonic flow of the South Asian summer monsoon at UTLS altitudes. Cases with a strong ATAL typically show boundary layer contributions from the Tibetan Plateau, the foothills of the Himalayas and other continental regions below the Asian monsoon. Weaker ATAL cases show higher contributions from the maritime boundary layer, often related to tropical cyclones, indicating a mixing of clean maritime and polluted continental air. On the one hand increasing anthropogenic emissions in the future are expected due to the strong growth of Asian economies; on the other hand the implementation of new emission control measures (in particular in China) has reduced the anthropogenic emissions of some pollutants contributing to the ATAL substantially. It needs to be monitored in the future whether the thickness and intensity of the ATAL will further increase, which will likely impact the surface climate.
机译:南亚夏季季风与上层层和较低的平衡层(UTL)中的大规模的反循环有关,该循环在内部的空气质量范围内。在北方夏季,这种空气质量的限制导致气溶胶的积累在约13至18 km之间(360和440k潜在的温度);这种气溶胶的积累构成了亚洲对孢子气溶胶层(Atal)。我们目前在2016年8月在印度北部的紧凑型光学反向散射汽油探测器(Cobald)仪器进行的球囊 - 传播的气溶胶反散射仪测量,并在2016年11月的季风时间与季风时间进行比较。测量展示了Atal的高度,垂直范围,气溶胶反向散射强度和卷云发生频率的强烈变化。由于它们衍生自卫星测量,因此不能从ATAL的气候手段推导出这样的变异性。为了解释这种观察到的可变性,我们使用平流层(蛤蜊)的化学拉格朗日模型来执行拉格朗日背轨分析。我们在2016年8月识别运输途径以及有助于Atal的空中包裹的源区。我们的分析揭示了各种因素,促进了观察到的Atal日常变异:大陆对流,热带气旋(海洋对流),抗气旋和平流层入侵的动态。因此,ATAL中的空气是来自不同大气高度层的空气质量的混合物。此外,模型边界层的贡献源于不同的地理源区。沿着落后轨迹最强的上升地的位置揭示了喜马拉雅山麓南部边缘的强大向上运输集群。从对流流出水平的顶部(约合13公里; 360 K),空气包裹在由南亚夏季季风在UTLS高度的南亚夏季季风的反气流流动的型钝化加热驱动的大型向上螺旋中慢慢地向AtiTuds上升。具有强大Atal的案例通常显示来自藏高原的边界层贡献,喜马拉雅山和亚洲季风下方的其他大陆地区的山麓。弱势案例较弱地显示了来自海边边界层的更高贡献,通常与热带气旋有关,表明清洁海事和污染的大陆空气的混合。由于亚洲经济体的强劲增长,预期未来的一方面增加人为排放;另一方面,新排放控制措施(特别是在中国)的实施减少了一些污染物的人为排放,这大大污染物。需要在将来监测Atal的厚度和强度是否会进一步增加,这可能会影响表面气候。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号