...
首页> 外文期刊>Atmospheric chemistry and physics >Global distribution and 14-year changes in erythemal irradiance, UV atmospheric transmission, and total column ozone for2005–2018 estimated from OMI and EPIC observations
【24h】

Global distribution and 14-year changes in erythemal irradiance, UV atmospheric transmission, and total column ozone for2005–2018 estimated from OMI and EPIC observations

机译:在OMI和史诗意见估计的2005-2018估计的全球分布和14年的红斑辐照度,紫外线辐照度和全柱臭氧变化

获取原文
           

摘要

Satellite data from the Ozone Measuring Instrument (OMI) and Earth Polychromatic Imaging Camera (EPIC) are used to study long-term changes and global distribution of UV erythemal irradiance E(ζ,Φ,z,t) (mW m?2) and the dimensionless UV index E ∕ (25 m Wm?2) over major cities as a function of latitude ζ, longitude Φ, altitude z, and time t. Extremely high amounts of erythemal irradiance (12  UV index 18) are found for many low-latitude and high-altitude sites (e.g., San Pedro, Chile, 2.45 km; La Paz, Bolivia, 3.78 km). Lower UV indices at some equatorial or high-altitude sites (e.g., Quito, Ecuador) occur because of persistent cloud effects. High UVI levels (UVI  6) are also found at most mid-latitude sites during the summer months for clear-sky days. OMI time-series data starting in January 2005 to December 2018 are used to estimate 14-year changes in erythemal irradiance ΔE, total column ozone ΔTCO3, cloud and haze transmission ΔCT derived from scene reflectivity LER, and reduced transmission from absorbing aerosols ΔCA derived from absorbing aerosol optical depth τA for 191 specific cities in the Northern Hemisphere and Southern Hemisphere from 60° S to 60° N using publicly available OMI data. A list of the sites showing changes at the 1 standard deviation level 1σ is provided. For many specific sites there has been little or no change in E(ζ,Φ,z,t) for the period 2005–2018. When the sites are averaged over 15° of latitude, there are strong correlation effects of both short- and long-term cloud and absorbing aerosol change as well as anticorrelation with total column ozone change ΔTCO3. Estimates of changes in atmospheric transmission ΔCT (ζ, Φ, z, t) derived from OMI-measured cloud and haze reflectivity LER and averaged over 15° of latitude show an increase of 1.1±1.2 % per decade between 60 and 45° S, almost no average 14-year change of 0.03±0.5 % per decade from 55° S to 30° N, local increases and decreases from 20 to 30° N, and an increase of 1±0.9 % per decade from 35 to 60° N. The largest changes in E(ζ,Φ,z,t) are driven by changes in cloud transmission CT. Synoptic EPIC radiance data from the sunlit Earth are used to derive ozone and reflectivity needed for global images of the distribution of E(ζ,Φ,z,t) from sunrise to sunset centered on the Americas, Europe–Africa, and Asia. EPIC data are used to show the latitudinal distribution of E(ζ,Φ,z,t) from the Equator to 75° for specific longitudes. EPIC UV erythemal images show the dominating effect of solar zenith angle (SZA), the strong increase in E with altitude, and the decreases caused by cloud cover. The nearly cloud-free images of E(ζ,Φ,z,t) over Australia during the summer (December) show regions of extremely high UVI (14–16) covering large parts of the continent. Zonal averages show a maximum of UVI = 14 in the equatorial region seasonally following latitudes where SZA = 0°. Dangerously high amounts of erythemal irradiance (12  UV index  18) are found for many low-latitude and high-altitude sites. High levels of UVI are known to lead to health problems (skin cancer and eye cataracts) with extended unprotected exposure, as shown in the extensive health statistics maintained by the Australian Institute of Health and Welfare and the United States National Institute of Health National Cancer Institute.
机译:来自臭氧测量仪(OMI)和地球多色成像相机(EPIC)的卫星数据用于研究紫外线辐照度E(ζ,φ,Z,T)(MW M 2)和的长期变化和全球分布作为纬度ζ,经度φ,高度z和时间t的函数,无量纲紫外线指数E /(25 m wm?2)e /(25 m wm?2)主要城市。对于许多低纬度和高空地点(例如,San Pedro,Chile,2.45公里,玻利维亚,玻利维亚,玻利维亚,玻利维亚,玻利维亚,玻利维亚,玻利维亚,玻利维亚,3.78公里,发现了极高的红斑辐照度(12 6)也在夏季最多的中纬度地点找到清晰的天空。 OMI时间序列数据从2005年1月到2018年12月开始估计从场景反射率达到的红斑辐照度ΔE,总柱臭氧ΔTCO3,云和雾霾速度ΔCt的14年变化,并降低了从吸收气溶胶ΔCa的传输使用公开的OMI数据,吸收北半球和南半球的特定城市的气溶胶光学深度τa,从60°S到60°N。提供了显示1标准偏差级别1σ处的变化的网站列表。对于许多特定网站,2005 - 2018年期间,E(ζ,φ,z,t)几乎没有变化。当该部位在纬度的平均超过15°时,短期和长期云和吸收气溶胶变化以及全柱臭氧变化ΔTCO3的逆相关效果具有很强的相关效果。估计从OMI测量的云和雾度反射率衍生的大气传输ΔCt(ζ,φ,z,t)的变化,并在60到45°S之间增加了1.1±1.2%的增加1.1±1.2%。几乎没有55°S至30°N,局部增加0.03±0.5%的平均14±0.5%,局部增加,从20到30°N增加,从35到60°N增加1±0.9% 。e(ζ,φ,z,t)的最大变化由云传输CT的变化驱动。来自Sunlit地球的天气史诗辐射数据用于导出从日出到日出的E(ζ,φ,z,t)的全球图像所需的臭氧和反射率,以中心为中心,欧洲 - 非洲和亚洲。史诗数据用于将来自赤道的E(ζ,φ,z,t)的纬度分布显示为特定的长度的75°。 EPIC紫外线图像显示太阳能天顶角(SZA)的主导效果,海拔高度的强劲增长,云覆盖引起的减少。在夏季(12月)在澳大利亚(十二月)展示了覆盖大陆大部分地区的极高UVI(14-16)的地区澳大利亚的几乎无云图像。区均线在校会上显示最大的UVI = 14,季节性跟踪SZA = 0°的纬度。对于许多低纬度和高空地点,发现了危险的大量红斑辐照度(12 <紫外线指数<18)。已知高水平的UVI,导致健康问题(皮肤癌和眼疗法),延长未受保护的暴露,如澳大利亚卫生福利和美国国家卫生研究所国家癌症研究所维护的广泛健康统计数据所示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号