首页> 外文期刊>Atmospheric chemistry and physics >Impact of aerosols and turbulence on cloud droplet growth: an in-cloud seeding case study using a parcel–DNS (direct numerical simulation) approach
【24h】

Impact of aerosols and turbulence on cloud droplet growth: an in-cloud seeding case study using a parcel–DNS (direct numerical simulation) approach

机译:气溶胶和湍流对云液滴增长的影响:使用包裹-DNS(直接数值模拟)方法的云种播种案例研究

获取原文
           

摘要

This paper investigates the relative importance of turbulence and aerosol effects on the broadening of the droplet size distribution (DSD) during the early stage of cloud and raindrop formation. A parcel–DNS (direct numerical simulation) hybrid approach is developed to seamlessly simulate the evolution of cloud droplets in an ascending cloud parcel. The results show that turbulence and cloud condensation nuclei (CCN) hygroscopicity are key to the efficient formation of large droplets. The ultragiant aerosols can quickly form embryonic drizzle drops and thus determine the onset time of autoconversion. However, due to their scarcity in natural clouds, their contribution to the total mass of drizzle drops is insignificant. In the meantime, turbulence sustains the formation of large droplets by effectively accelerating the collisions of small droplets. The DSD broadening through turbulent collisions is significant and therefore yields a higher autoconversion rate compared to that in a nonturbulent case. It is argued that the level of autoconversion is heavily determined by turbulence intensity. This paper also presents an in-cloud seeding scenario designed to scrutinize the effect of aerosols in terms of number concentration and size. It is found that seeding more aerosols leads to higher competition for water vapor, reduces the mean droplet radius, and therefore slows down the autoconversion rate. On the other hand, increasing the seeding particle size can buffer such a negative feedback. Despite the fact that the autoconversion rate is prominently altered by turbulence and seeding, bulk variables such as liquid water content (LWC) stays nearly identical among all cases. Additionally, the lowest autoconversion rate is not co-located with the smallest mean droplet radius. The finding indicates that the traditional Kessler-type or Sundqvist-type autoconversion parameterizations, which depend on the LWC or mean radius, cannot capture the drizzle formation process very well. Properties related to the width or the shape of the DSD are also needed, suggesting that the scheme of Berry and Reinhardt (1974) is conceptually better. It is also suggested that a turbulence-dependent relative-dispersion parameter should be considered.
机译:本文调查了湍流和气溶胶影响对云和雨滴形成早期液滴尺寸分布(DSD)扩大的相对重要性。开发了一个包裹DNS(直接数值模拟)混合方法,以便在升云包裹中无缝模拟云液滴的演变。结果表明,湍流和云凝结核(CCN)吸湿性是大液滴有效形成的关键。 Ultragiant气溶胶可以快速形成胚胎毛毛腺下降,从而确定自动变速的起始时间。然而,由于它们在天然云中的稀缺性,他们对毛毛雨滴落总量的贡献微不足道。与此同时,通过有效地加速小液滴的碰撞,湍流维持大液滴的形成。通过湍流碰撞的DSD宽度显着,因此与在不矛盾的情况下相比,产生更高的自电化率。有人认为,通过湍流强度大大确定自电化等级。本文还介绍了一个云种播种场景,旨在在数量浓度和尺寸方面仔细检查气溶胶的效果。发现播种更多的气溶胶导致水蒸气的竞争更高,降低平均液滴半径,从而减慢自传速率。另一方面,增加播种粒度可以缓冲这种负反馈。尽管湍流和播种突出地改变了自电化转换率,但液体含水量(LWC)等体变量在所有情况下几乎相同。另外,最低的自电化转换速率不与最小平均液滴半径共同定位。该发现表示传统的KESSLER型或SunDQVist型自动转换参数化,依赖于LWC或平均半径,不能很好地捕获毛毛雨形成过程。还需要与DSD的宽度或形状相关的性质,表明浆果和Reinhardt(1974)的方案在概念上更好。还建议考虑湍流依赖性相对分散参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号