...
首页> 外文期刊>Atmospheric chemistry and physics >Composition and origin of PMsub2.5/sub aerosol particles in the upper Rhine valley in summer
【24h】

Composition and origin of PMsub2.5/sub aerosol particles in the upper Rhine valley in summer

机译:PM 2.5 气溶胶颗粒在夏季上部莱茵河上的组成和起源

获取原文
           

摘要

We conducted a 6-week measurement campaign in summer 2016 at a rural site about 11 km north of the city of Karlsruhe in southwest Germany in order to study the chemical composition and origin of aerosols in the upper Rhine valley. In particular, we deployed a single-particle mass spectrometer (LAAPTOF) and an aerosol mass spectrometer (AMS) to provide complementary chemical information on aerosol particles smaller than 2.5 μm. For the entire measurement period, the total aerosol particle mass was dominated by sodium salts, contributing on average (36±27) % to the total single particles measured by the LAAPTOF. The total particulate organic compounds, sulfate, nitrate, and ammonium contributed on average (58±12) %, (22±7) %, (10±1) %, and (9±3) % to the total non-refractory particle mass measured by the AMS. Positive matrix factorization (PMF) analysis for the AMS data suggests that the total organic aerosol (OA) consisted of five components, including (9±7) % hydrocarbon-like OA (HOA), (16±11) % semi-volatile oxygenated OA (SV-OOA), and (75±15) % low-volatility oxygenated OA (LV-OOA). The regional transport model COSMO-ART was applied for source apportionment and to achieve a better understanding of the impact of complex transport patterns on the field observations. Combining field observations and model simulations, we attributed high particle numbers and SO2 concentrations observed at this rural site to industrial emissions from power plants and a refinery in Karlsruhe. In addition, two characteristic episodes with aerosol particle mass dominated by sodium salts particles comprising (70±24) % of the total single particles and organic compounds accounting for (77±6) % of total non-refractory species, respectively, were investigated in detail. For the first episode, we identified relatively fresh and aged sea salt particles originating from the Atlantic Ocean more than 800 km away. These particles showed markers like m∕z?129 C5H7NO3+, indicating the influence of anthropogenic emissions modifying their composition, e.g. from chloride to nitrate salts during the long-range transport. For a 3 d episode including high organic mass concentrations, model simulations show that on average (74±7) % of the particulate organics at this site were of biogenic origin. Detailed model analysis allowed us to find out that three subsequent peaks of high organic mass concentrations originated from different sources, including local emissions from the city and industrial area of Karlsruhe, regional transport from the city of Stuttgart (~64 km away), and potential local night-time formation and growth. Biogenic (forest) and anthropogenic (urban) emissions were mixed during transport and contributed to the formation of organic particles. In addition, topography, temperature inversion, and stagnant meteorological conditions also played a role in the build-up of higher organic particle mass concentrations. Furthermore, the model was evaluated using field observations and corresponding sensitivity tests. The model results show good agreement with trends and concentrations observed for several trace gases (e.g. O3, NO2, and SO2) and aerosol particle compounds (e.g. ammonium and nitrate). However, the model underestimates the number of particles by an order of magnitude and underestimates the mass of organic particles by a factor of 2.3. The discrepancy was expected for particle number since the model does not include all nucleation processes. The missing organic mass indicates either an underestimated regional background or missing sources and/or mechanisms in the model, like night-time chemistry. This study demonstrates the potential of combining comprehensive field observations with dedicated transport modelling to understand the chemical composition and complex origin of aerosols.
机译:我们于2016年夏季在德国西南部北北北北夏季进行了一项为期6周的衡量活动,约为11公里处,以研究上莱茵河谷的化学成分和起源。特别地,我们部署了单粒子质谱仪(LaAptOf)和气溶胶质谱仪(AMS),以提供关于小于2.5μm的气溶胶颗粒的互补化学信息。对于整个测量期,总气溶胶颗粒质量由钠盐支配,平均贡献(36±27)%,以通过LapTof测量的总单颗粒。总颗粒有机化合物,硫酸盐,硝酸盐和铵平均(58±12)%,(22±7)%(10±1)%和(9±3)%到总不耐火颗粒由AMS测量的质量。 AMS数据的正矩阵分解(PMF)分析表明,总有机气溶胶(OA)由五种组分组成,包括(9±7)%烃类OA(HOA),(16±11)%半挥发性氧化OA(SV-OOA),和(75±15)%低挥发性氧化OA(LV-OOA)。区域运输模型宇宙艺术被应用于源分摊,以更好地了解复杂传输模式对现场观测的影响。结合现场观测和模型模拟,我们归因于该农村现场观察到的高粒子数和SO2浓度,从发电厂和Karlsruhe的炼油厂的工业排放。另外,研究了两个具有由包含(70±24)%的盐颗粒的气溶胶颗粒的两个特征集,所述盐颗粒分别分别占总颗粒的总单颗粒和有机化合物总量的(77±6)%的总非耐火物种%。细节。对于第一集,我们鉴定了源自大西洋的相对新鲜和老化的海盐粒子,超过800公里。这些颗粒显示出M /Z≥129C5H7NO3+等标记,表明改变其组合物的人为排放的影响,例如,在远程运输过程中将氯化物从氯化物到硝酸盐盐。对于包括高有机质量浓度的3D剧集,模型模拟表明,平均(74±7)%的本网站的颗粒有机物是生物起源。详细的模型分析允许我们了解到,来自不同来源的三个后续高有机质量浓度的峰,包括卡尔斯鲁厄市和工业区的当地排放,从斯图加特市(距离〜64千米以上)和潜力当地的夜间形成和增长。在运输过程中混合生物生物(森林)和人为(城市)排放,有助于形成有机颗粒。此外,地形,温度倒置和停滞气象条件也在较高有机颗粒质量浓度的积聚中起作用。此外,使用现场观察和相应的灵敏度测试来评估模型。模型结果表明,对于几种痕量气体(例如,O 3,NO 2和SO2)和气溶胶颗粒化合物(例如铵和硝酸盐),观察到的趋势和浓度良好。然而,该模型通过数量级下估计颗粒的数量,并低估了有机颗粒的质量为2.3。由于该模型不包括所有成核过程,因此预期差异。缺失的有机肿块表明了模型中低估的区域背景或缺失的来源和/或机制,如夜间化学。本研究表明,与专用的传输建模相结合的综合现场观测,以了解化学成分和气溶胶的复杂起源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号