...
首页> 外文期刊>Astronomy and astrophysics >Distribution of water in the G327.3–0.6 massive star-forming region
【24h】

Distribution of water in the G327.3–0.6 massive star-forming region

机译:在G327.3-0.6巨大的恒星形成区域中的水分布

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Aims. Following our past study of the distribution of warm gas in the G327.3–0.6 massive star-forming region, we aim here at characterizing the large-scale distribution of water in this active region of massive star formation made of individual objects in different evolutionary phases. We investigate possible variations of the water abundance as a function of evolution. Methods. We present Herschel /PACS (4 ′× 4′ ) continuum maps at 89 and179 μ m encompassing the whole region (H ii region and the infrared dark cloud, IRDC) and an APEX / SABOCA (2 ′× 2′ ) map at 350 μ m of the IRDC. New spectral Herschel / HIFI maps toward the IRDC region covering the low-energy water lines at 987 and 1113 GHz (and their H _(2) ~(18) O counterparts) are also presented and combined with HIFI pointed observations toward the G327 hot core region. We infer the physical properties of the gas through optical depth analysis and radiative transfer modeling of the HIFI lines. Results. The distribution of the continuum emission at 89 and 179 μ m follows the thermal continuum emission observed at longer wavelengths, with a peak at the position of the hot core and a secondary peak in the H ii region, and an arch-like layer of hot gas west of this H ii region. The same morphology is observed in the p-H _(2) O 1 _(11) –0 _(00) line, in absorption toward all submillimeter dust condensations. Optical depths of approximately 80 and 15 are estimated and correspond to column densities of 10~(15) and 2 × 10~(14) cm ~(-2) , respectively, for the hot core and IRDC position. These values indicate an abundance of water relative to H _(2) of 3 × 10~(-8) toward the hot core, while the abundance of water does not change along the IRDC with values close to some 10 ~(-8) . Infall (over at least 20 ″ ) is detected toward the hot core position with a rate of 1?1.3 × 10~(-2) M _(⊙) ? / yr, high enough to overcome the radiation pressure that is due to the stellar luminosity. The source structure of the hot core region appears complex, with a cold outer gas envelope in expansion, situated between the outflow and the observer, extending over 0.32 pc. The outflow is seen face-on and rather centered away from the hot core. Conclusions. The distribution of water along the IRDC is roughly constant with an abundance peak in the more evolved object, that is, in the hot core. These water abundances are in agreement with previous studies in other massive objects and chemical models.
机译:目标。在我们过去研究G327.3-0.6巨大的恒星形成区域中的温水分布之后,我们的目的在于在不同进化中的各个物体制成的巨大恒星形成中的这种活性区域中的大规模分布。阶段。我们调查了作为演进功能的水丰度的可能变化。方法。我们在89和179微米上呈现Herschel / PACS(4'×4')连续体图,包括整个地区(H II区域和红外云,IRDC)和Apex / Saboca(2'×2')地图在350地图μMIRDC。还向IRDC区域映射覆盖987和1113GHz(及其H _(2)〜(18)o对应物)的IRDC区域,也与HIFI指向G327热的观察结果相结合核心地区。通过光学深度分析和HiFi线的辐射转移建模推断出气体的物理性质。结果。在89和179μm的连续发射的分布遵循在更长的波长下观察到的热连续发射,在热核的位置处的峰值和H II区域中的次要峰,以及拱形热的峰值该H II区域的气体。在P-H _(2)O 1 _(11)-0 _(00)线中观察到相同的形态,吸收到所有亚颌下灰尘凝聚。估计大约80和15的光学深度,分别对应于热核和IRDC位置10〜(15)和2×10〜(14)cm〜(-2)的列密度。这些值表示相对于Hot核的H _(2)的H _(2)的水朝向热核,而水的丰度不会沿IRDC改变,其中值接近约10〜(-8) 。朝向热核心位置检测到infall(超过20“),速率为1?1.3×10〜(-2)m _(⊙)? / Yr,足够高,以克服由于恒星发光度而导致的辐射压力。热核心区域的源结构出现复杂,具有冷的外部气体包络,膨胀,位于流出和观察者之间,延伸超过0.32pc。从热核心看起来,从热核心看到流出。结论。沿着IRDC的水分布大致恒定,在更进一步的物体中具有丰度峰,即在热核中。这些水丰富与以前的其他大型物体和化学模型的研究一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号