...
首页> 外文期刊>Journal of Thermal Science and Technology >Effects of thermal and pressure loads on structural deformation of liquid oxygen/methane engine combustion chamber
【24h】

Effects of thermal and pressure loads on structural deformation of liquid oxygen/methane engine combustion chamber

机译:热压荷载对液氧/甲烷燃烧室结构变形的影响

获取原文
           

摘要

To investigate the influences of thermal and pressure loads on the structural deformation of the Liquid Oxygen/Methane rocket engine combustion chamber, a complete thermo-structural analysis scheme including fluid-thermal analysis and structural finite element analysis is developed and then verified to be reasonable. By conducting fluid-thermal analysis, the detailed distribution of the thermal and pressure loads is obtained. These results are utilized as body loads and surface loads in structural finite element analysis. Then, the stress-strain responses of the combustion chamber and the accumulation process of the deformation induced by thermal and pressure loads were studied in detail. The main conclusions are as follows: Under the action of thermal loads alone, the most pronounced residual mechanical strain is at the upstream of the nozzle divergent segment. Reducing the temperature difference between the hot run and the pre-cooling phase can be a feasible improvement measure for this issue. Under the action of the pressure loads alone, the bottom of the cooling channel bends toward the centerline of the combustion chamber. Properly increasing the thickness of the channel bottom near the coolant inlet is deemed to be an effective measure to reduce this bending trend. Under the combined action of thermal and pressure loads, the structural deformation characteristics are determined by the combination of thermal loads and pressure loads, rather than mainly by thermal loads. The accumulation rate of mechanical strain at the channel bottom corner is much rapider than the other positions. Turning the sharp bottom corner of the cooling channel into rounded corner is an alternative method of suppressing strain accumulation.
机译:为了研究热和压力负荷对液氧/甲烷火箭发动机燃烧室的结构变形的影响,开发了一种完整的热结构分析方案,包括流体 - 热分析和结构有限元分析,然后验证是合理的。通过进行流体 - 热分析,获得热和压力负荷的详细分布。这些结果用作结构有限元分析中的体载和表面载荷。然后,详细研究了燃烧室的应力 - 应变响应和通过热和压力负荷诱导的变形的累积过程。主要结论如下:在热载荷的作用下,最明显的残留机械应变位于喷嘴发散区段的上游。降低热运行和预冷却阶段之间的温差可以是该问题的可行改进措施。在单独的压力负载的作用下,冷却通道的底部朝向燃烧室的中心线弯曲。正确增加冷却剂入口附近的通道底部的厚度被认为是减少这种弯曲趋势的有效措施。在热和压力负荷的组合作用下,结构变形特性通过热负荷和压力负荷的组合来确定,而不是主要通过热负荷来确定。通道底角的机械应变的累积速度比其他位置多得多。将冷却通道的锋利底角变成圆角是抑制应变累积的替代方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号