首页> 外文期刊>Journal of Science: Advanced Materials and Devices >Fracture toughness enhancement of yttria-stabilized tetragonal zirconia polycrystalline ceramics through magnesia-partially stabilized zirconia addition
【24h】

Fracture toughness enhancement of yttria-stabilized tetragonal zirconia polycrystalline ceramics through magnesia-partially stabilized zirconia addition

机译:通过氧化镁部分稳定的氧化锆加入的抗氧化钇稳定四方氧化锆多晶陶瓷的断裂韧性增强

获取原文
       

摘要

In this work, for the first time, we report a novel method on the fracture toughness enhancement of 3?mol % yttria-stabilized tetragonal zirconia polycrystalline (3Y-TZP) ceramics through the incorporation of 8?mol % magnesia-partially stabilized zirconia (8 Mg-PSZ) powders having high fracture toughness. Highly densified composites (x3Y-TZP/y8Mg-PSZ; where x and y vary between 0.25 and 0.75?wt. %) were obtained with a relative density over 99% by pressureless sintering. Relative density, Vickers hardness (HV) and indentation fracture toughness (KIc) were significantly improved by sintering temperature and dwell-time increment. Specifically, HV and KIcvalues of 0.5(3Y-TZP)/0.5(8 Mg-PSZ) composite sintered at 1500oC-2h were increased by 7% and 30%, respectively, compared to that of 3Y-TZP. Sintered bodies consisted of c-ZrO2, t-ZrO2and m-ZrO2phases without any new phase formation. m-ZrO2/c-ZrO2+t-ZrO2volumetric phase ratios changed with the increase of sintering temperature and time. Stress-induced t-ZrO2→m-ZrO2phase transformation within c-ZrO2grains in 8 Mg-PSZ was the main mechanism for toughness enhancement. Energy absorbing mechanisms, e.g., crack-bridging, crack-deflection and crack branching were also found to contribute the blunting of cracks. It is thought that our approach presented herein can be considered not only fracture toughness enhancement but also other properties in various materials for functional and structural purposes.
机译:在这项工作中,我们首次报告了一种新的方法,通过掺入8摩尔%的氧化镁部分稳定的氧化锆(1mol%氧化镁)(3μm-TZP)陶瓷的断裂韧性增强新的方法8mg-psz)粉末具有高裂缝韧性。高度致密化复合材料(X3Y-TZP / Y8MG-PSZ;其中x和y在0.25和0.75℃之间变化,通过无压烧结以99%以上的相对密度获得。通过烧结温度和停留时间增量显着提高相对密度,维氏硬度(HV)和压痕断裂韧性(KIC)。具体而言,与3Y-TZP相比,在1500℃-2H时烧结的0.5(3Y-TZP)/ 0.5(8mg-PSZ)复合材料的HV和KICVALUE分别增加了7%和30%。烧结体由C-ZrO2,T- ZrO2和M- ZrO2phase组成,没有任何新的相形成。 M-ZrO2 / C-ZrO2 + T-ZrO2 Volumetric相比随着烧结温度和时间的增加而变化。在8mg-PSZ中C-ZRO2GRAIN内的应激诱导的T-ZRO2→M-ZRO2PHA酶转化是韧性增强的主要机制。还发现能量吸收机制,例如裂缝桥接,裂缝裂缝和裂纹分支,以促进裂缝的钝化。据认为,我们本文呈现的方法不仅可以被认为是骨折韧性增强,而且可以被认为是各种材料的其他性质,用于功能性和结构目的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号