首页> 外文期刊>Journal of applied clinical medical physics / >A novel, yet simple MLC‐based 3D‐crossfire technique for spatially fractionated GRID therapy treatment of deep‐seated bulky tumors
【24h】

A novel, yet simple MLC‐based 3D‐crossfire technique for spatially fractionated GRID therapy treatment of deep‐seated bulky tumors

机译:一种新颖,简单的MLC基于MLC的3D交叉机技术,用于深层粗肿瘤的空间分馏网格疗法治疗

获取原文
           

摘要

Purpose Treating deep‐seated bulky tumors with traditional single‐field Cerrobend GRID‐blocks has many limitations such as suboptimal target coverage and excessive skin toxicity. Heavy traditional GRID‐blocks are a concern for patient safety at various gantry‐angles and dosimetric detail is not always available without a GRID template in user’s treatment planning system. Herein, we propose a simple, yet clinically useful multileaf collimator (MLC)‐based three‐dimensional (3D)‐crossfire technique to provide sufficient target coverage, reduce skin dose, and potentially escalate tumor dose to deep‐seated bulky tumors. Materials/methods Thirteen patients (multiple sites) who underwent conventional single‐field cerrobend GRID‐block therapy (maximum, 15?Gy in 1 fraction) were re‐planned using an MLC‐based 3D‐crossfire method. Gross tumor volume (GTV) was used to generate a lattice pattern of 10?mm diameter and 20?mm center‐to‐center mimicking conventional GRID‐block using an in‐house MATLAB program. For the same prescription, MLC‐based 3D‐crossfire grid plans were generated using 6‐gantry positions (clockwise) at 60° spacing (210°, 270°, 330°, 30°, 90°, 150°, therefore, each gantry angle associated with a complement angle at 180° apart) with differentially‐weighted 6 or 18?MV beams in Eclipse. For each gantry, standard Millenium120 (Varian) 5?mm MLC leaves were fit to the grid‐pattern with 90° collimator rotation, so that the tunneling dose distribution was achieved. Acuros‐based dose was calculated for heterogeneity corrections. Dosimetric parameters evaluated include: mean GTV dose, GTV dose heterogeneities (peak‐to‐valley dose ratio, PVDR), skin dose and dose to other adjacent critical structures. Additionally, planning time and delivery efficiency was recorded. With 3D‐MLC, dose escalation up to 23?Gy was simulated for all patient's plans. Results All 3D‐MLC crossfire GRID plans exhibited excellent target coverage with mean GTV dose of 13.4?±?0.5?Gy (range: 12.43–14.24?Gy) and mean PVDR of 2.0?±?0.3 (range: 1.7–2.4). Maximal and dose to 5?cc of skin were 9.7?±?2.7?Gy (range: 5.4–14.0?Gy) and 6.3?±?1.8?Gy (range: 4.1–11.1?Gy), on average respectively. Three‐dimensional‐MLC treatment planning time was about an hour or less. Compared to traditional GRID‐block, average beam on time was 20% less, while providing similar overall treatment time. With 3D‐MLC plans, tumor dose can be escalated up to 23?Gy while respecting skin dose tolerances. Conclusion The simple MLC‐based 3D‐crossfire GRID‐therapy technique resulted in enhanced target coverage for de‐bulking deep‐seated bulky tumors, reduced skin toxicity and spare adjacent critical structures. This simple MLC‐based approach can be easily adopted by any radiotherapy center. It provides detailed dosimetry and a safe and effective treatment by eliminating the heavy physical GRID‐block and could potentially provide same day treatment. Prospective clinical trial with higher tumor‐dose to bulky deep‐seated tumors is anticipated.
机译:用传统的单场Cerrovend网格嵌段治疗深层笨重的肿瘤的目的具有许多限制,例如次优的目标覆盖率和过度的皮肤毒性。重传传统的网格块是对各种龙门角的患者安全性的关注,并且在用户的治疗计划系统中没有网格模板并不总是可用的。在此,我们提出了一种简单但临床有用的多叶准直器(MLC)的三维(3D)-Crossfire技术,以提供足够的目标覆盖,减少皮肤剂量,并可能升高的肿瘤剂量到深层笨重的肿瘤。使用基于MLC的3D Crossfire方法重新计划,使用基于MLC的3D Crossfire方法重新计划了常规单场Cerrocend网格嵌段疗法(最大15μl)的材料/方法13名患者(多个位点)。总肿瘤体积(GTV)用于产生10Ωmm直径的晶格图案,使用内部MATLAB程序使用内部MATLAB程序模拟传统网格块的20毫米的中心到中心。对于相同的处方,使用6架间距(顺时针)在60°间距(210°,270°,330°,30°,90°,150°,因此每个龙门架产生MLC的3D交叉栅格计划角度在180°分开时与互补角相关的角度,在日食中具有差分加权的6或18孔。对于每个龙门架,标准毫纳米(Varian)5?Mm MLC叶片适合具有90°准直器旋转的网格图案,从而实现了隧道剂量分布。计算基于Acuros的剂量,用于异质性校正。评估的剂量测定值包括:平均GTV剂量,GTV剂量异质性(峰 - 谷剂量比,PVDR),皮肤剂量和剂量与其他相邻的关键结构。此外,记录了规划时间和交付效率。对于3D-MLC,为所有患者的计划模拟了高达23的剂量升级。结果所有3D-MLC Crossfire栅格计划呈现出优异的目标覆盖率,平均GTV剂量为13.4?±0.5?GY(范围:12.43-14.24?GY)和平均PVDR为2.0?±0.3(范围:1.7-2.4)。皮肤的最大和剂量为5?β±2.7?gy(范围:5.4-14.0?gy)和6.3?±1.8?gy(范围:4.1-11.1?gy),平均平均。三维MLC治疗计划时间约为一小时或更短时间。与传统的网格块相比,平均梁按时少20%,同时提供类似的整体治疗时间。通过3D-MLC计划,肿瘤剂量可升级至23μmΩ·GY,同时尊重皮肤剂量耐受性。结论基于简单的基于MLC的3D交叉电网治疗技术导致了增强的脱位深层肿瘤肿瘤的目标覆盖率,降低了皮肤毒性和备用相邻的关键结构。任何放射疗法中心都可以轻松采用这种基于MLC的方法。通过消除重型物理网格嵌段,它提供了详细的剂量测定和安全有效的处理,并且可能提供当天治疗。预计具有较高肿瘤剂量的前瞻性临床试验至庞大的深层肿瘤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号