首页> 外文期刊>JMIR Medical Informatics >Improving Clinical Translation of Machine Learning Approaches Through Clinician-Tailored Visual Displays of Black Box Algorithms: Development and Validation
【24h】

Improving Clinical Translation of Machine Learning Approaches Through Clinician-Tailored Visual Displays of Black Box Algorithms: Development and Validation

机译:通过临床医学验证的黑匣子算法视觉显示改善机器学习方法的临床翻译:开发和验证

获取原文
       

摘要

Background Despite the promise of machine learning (ML) to inform individualized medical care, the clinical utility of ML in medicine has been limited by the minimal interpretability and black box nature of these algorithms. Objective The study aimed to demonstrate a general and simple framework for generating clinically relevant and interpretable visualizations of black box predictions to aid in the clinical translation of ML. Methods To obtain improved transparency of ML, simplified models and visual displays can be generated using common methods from clinical practice such as decision trees and effect plots. We illustrated the approach based on postprocessing of ML predictions, in this case random forest predictions, and applied the method to data from the Left Ventricular (LV) Structural Predictors of Sudden Cardiac Death (SCD) Registry for individualized risk prediction of SCD, a leading cause of death. Results With the LV Structural Predictors of SCD Registry data, SCD risk predictions are obtained from a random forest algorithm that identifies the most important predictors, nonlinearities, and interactions among a large number of variables while naturally accounting for missing data. The black box predictions are postprocessed using classification and regression trees into a clinically relevant and interpretable visualization. The method also quantifies the relative importance of an individual or a combination of predictors. Several risk factors (heart failure hospitalization, cardiac magnetic resonance imaging indices, and serum concentration of systemic inflammation) can be clearly visualized as branch points of a decision tree to discriminate between low-, intermediate-, and high-risk patients. Conclusions Through a clinically important example, we illustrate a general and simple approach to increase the clinical translation of ML through clinician-tailored visual displays of results from black box algorithms. We illustrate this general model-agnostic framework by applying it to SCD risk prediction. Although we illustrate the methods using SCD prediction with random forest, the methods presented are applicable more broadly to improving the clinical translation of ML, regardless of the specific ML algorithm or clinical application. As any trained predictive model can be summarized in this manner to a prespecified level of precision, we encourage the use of simplified visual displays as an adjunct to the complex predictive model. Overall, this framework can allow clinicians to peek inside the black box and develop a deeper understanding of the most important features from a model to gain trust in the predictions and confidence in applying them to clinical care.
机译:背景技术尽管机器学习(ML)通知个体化医疗保健,但ML在医学中的临床效用受到这些算法的最小解释性和黑匣子性质的限制。目的该研究旨在展示一般简单的框架,用于在黑匣子预测的临床相关和可解释可视化的临床相关和可解释可视化,以帮助ML的临床翻译。可以使用诸如决策树和效果图的临床实践的普通方法来产生提高ML,简化模型和视觉显示的方法的方法。我们说明了基于ML预测的后处理的方法,在这种情况下,随机森林预测,并将该方法应用于来自突然心脏死亡(SCD)登记处的左心室(LV)结构预测因子的数据,以进行SCD的个性化风险预测死亡原因。使用SCD注册表数据的LV结构预测因子,SCD风险预测是​​从一个随机林算法获得的,该算法识别大量变量中最重要的预测器,非线性和相互作用,同时自然会考虑缺失数据。黑匣子预测是使用分类和回归树进行后处理到临床相关和可解释的可视化。该方法还量化了个人或预测器组合的相对重要性。几种危险因素(心力衰竭住院,心脏磁共振成像指数和全身炎症血清浓度)可以清楚地被视为决策树的分支点,以区分低,中间和高风险患者。结论通过临床重要的例子,我们说明了一种通过黑匣子算法的结果的临床医学医生定制视觉显示增加ML的一般和简单的方法。我们通过将其应用于SCD风险预测来说明这一一般模型 - 不可知框架。尽管我们说明了使用随机森林的SCD预测的方法,但呈现的方法更广泛地适用于改善ML的临床翻译,无论特定的mL算法还是临床应用。由于任何训练有素的预测模型可以以这种方式总结到预先精确的精度水平,我们鼓励使用简化的视觉显示作为复杂预测模型的附件。总的来说,这个框架可以让临床医生在黑匣子里偷看,并对模型中最重要的特征进行更深的了解,以获得对将它们应用于临床护理的预测和信心。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号