...
首页> 外文期刊>Hydrology and Earth System Sciences >Disentangling temporal and population variability in plant root water uptake from stable isotopic analysis: when rooting depth matters in labeling studies
【24h】

Disentangling temporal and population variability in plant root water uptake from stable isotopic analysis: when rooting depth matters in labeling studies

机译:稳定同位素分析的植物根水吸收中的解开术语和群体变异:当生根深度在标签研究中时

获取原文

摘要

Isotopic labeling techniques have the potential to minimize the uncertainty of plant root water uptake (RWU) profiles estimated using multisource (statistical) modeling by artificially enhancing the soil water isotopic gradient. On the other end of the modeling continuum, physical models can account for hydrodynamic constraints to RWU if simultaneous soil and plant water status data are available. In this study, a population of tall fescue (Festuca arundinacea cv.?Soni) was grown in amacro-rhizotron and monitored for a 34 h long period following the oxygen stable isotopic (18O) labeling of deep soil water. Aboveground variables included tiller and leaf water oxygen isotopic compositions (δtiller and δleaf, respectively) as well as leaf water potential (ψleaf), relative humidity, and transpiration rate. Belowground profiles of root length density (RLD), soil water content, and isotopic composition were also sampled. While there were strong correlations between hydraulic variables as well as between isotopic variables, the experimental results underlined the partial disconnect between the temporal dynamics of hydraulic and isotopic variables. In order to dissect the problem, we reproduced both types of observations with a one-dimensional physical model of water flow in the soil–plant domain for 60 different realistic RLD profiles. While simulated ψleaf followed clear temporal variations with small differences across plants, as if they were “onboard the same roller coaster”, simulated δtiller values within the plant population were rather heterogeneous (“swarm-like”) with relatively little temporal variation and a strong sensitivity to rooting depth. Thus, the physical model explained the discrepancy between isotopic and hydraulic observations: the variability captured by δtiller reflected the spatial heterogeneity in the rooting depth in the soil region influenced by the labeling and may not correlate with the temporal dynamics of ψleaf. In other words, ψleaf varied in time with transpiration rate, while δtiller varied across plants with rooting depth. For comparison purposes, a Bayesian statistical model was also used to simulate RWU. While it predicted relatively similar cumulative RWU profiles, the physical model could differentiate the spatial from the temporal dynamics of the isotopic composition. An important difference between the two types of RWU models was the ability of the physical model to simulate the occurrence of hydraulic lift in order to explain concomitant increases in the soil water content and the isotopic composition observed overnight above the soil labeling region.
机译:同位素标记技术具有通过人工增强土壤水同位素梯度来最小化植物根部水吸收(RWU)谱的不确定性的可能性。在建模连续内的另一端,如果可以使用同时土壤和植物水状态数据,物理模型可以解释对RWU的流体动力约束。在这项研究中,高级杂散(Festuca Arundinacea Cv.nsoni)的人群在氨基根除罗罗尔生长,并在氧气稳定同位素(18O)的深层水标记后监测34小时。地上变量包括分蘖和叶子水氧同位素组合物(Δtiller和ΔLeaf)以及叶水电位(ψ叶),相对湿度和蒸腾率。还采样了根长密度(RLD),土壤含水量和同位素组成的地下剖面。虽然液压变量与同位素变量之间存在强烈的相关性,但实验结果强调了液压和同位素变量的时间动态之间的部分断开。为了解剖问题,我们通过在土壤植物领域的水流量的一维物理模型再现了两种不同的现实RLD分布。虽然模拟ψψ沿着植物的差异较小的时间变化,仿佛在植物中是“船上的滚筒”,植物群中的模拟Δtiller值相当异构(“群状”),时间变化相对较少对生根深度的敏感性。因此,物理模型解释了同位素和水力观测之间的差异:ΔTiller捕获的可变性反映了由标记影响的土壤区域中的生根深度中的空间异质性,并且可能与ψ叶的时间动态无关。换句话说,ψ叶随着蒸腾速率而变化,而Δtiller在具有生根深度的植物上变化。为了比较目的,贝叶斯统计模型也用于模拟RWU。虽然它预测了相对相似的累积RWU简档,但物理模型可以从同位素组合物的时间动态区分空间。两种类型的RWU模型之间的一个重要差异是物理模型模拟液压升力的发生,以便在土壤含水量和在土壤标记区域上方观察到过夜观察到的同位素组成的伴随的伴随。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号